I solved my issue thanks to bdolan suggesting to reduce SO_SNDBUF
. However, to use this code you must note that your code uses Winsock 2 (for overlapped sockets and WSASend
). In addition to this, your SOCKET
handle must have been created similarily to:
SOCKET sock = WSASocket(AF_INET, SOCK_STREAM, IPPROTO_TCP, NULL, 0, WSA_FLAG_OVERLAPPED);
Note the WSA_FLAG_OVERLAPPED
flag as the final parameter.
In this answer I will go through the stages of uploading data to a TCP server, and tracking each upload chunk and it's completion status. This concept requires splitting your upload buffer into chunks (minimal existing code modification required) and uploading it piece by piece, then tracking each chunk.
My code flow
Global variables
Your code document must have the following global variables:
#define UPLOAD_CHUNK_SIZE 4096
int g_nUploadChunks = 0;
int g_nChunksCompleted = 0;
WSAOVERLAPPED *g_pSendOverlapped = NULL;
int g_nBytesSent = 0;
float g_flLastUploadTimeReset = 0.0f;
Note: in my tests, decreasing UPLOAD_CHUNK_SIZE
results in increased upload speed accuracy, but decreases overall upload speed. Increasing UPLOAD_CHUNK_SIZE
results in decreased upload speed accuracy, but increases overall upload speed. 4 kilobytes (4096 bytes) was a good comprimise for a file ~500kB in size.
Callback function
This function increments the bytes sent and chunks completed variables (called after a chunk has been completely uploaded to the server)
void CALLBACK SendCompletionCallback(DWORD dwError, DWORD cbTransferred, LPWSAOVERLAPPED lpOverlapped, DWORD dwFlags)
{
g_nChunksCompleted++;
g_nBytesSent += cbTransferred;
}
Prepare socket
Initially, the socket must be prepared by reducing SO_SNDBUF
to 0.
Note: In my tests, any value greater than 0 will result in undesirable behaviour.
int nSndBuf = 0;
setsockopt(sock, SOL_SOCKET, SO_SNDBUF, (char*)&nSndBuf, sizeof(nSndBuf));
Create WSAOVERLAPPED
array
An array of WSAOVERLAPPED
structures must be created to hold the overlapped status of all of our upload chunks. To do this I simply:
// Calculate the amount of upload chunks we will have to create.
// nDataBytes is the size of data you wish to upload
g_nUploadChunks = ceil(nDataBytes / float(UPLOAD_CHUNK_SIZE));
// Overlapped array, should be delete'd after all uploads have completed
g_pSendOverlapped = new WSAOVERLAPPED[g_nUploadChunks];
memset(g_pSendOverlapped, 0, sizeof(WSAOVERLAPPED) * g_nUploadChunks);
Upload data
All of the data that needs to be send, for example purposes, is held in a variable called pszData
. Then, using WSASend
, the data is sent in blocks defined by the constant, UPLOAD_CHUNK_SIZE
.
WSABUF dataBuf;
DWORD dwBytesSent = 0;
int err;
int i, j;
for(i = 0, j = 0; i < nDataBytes; i += UPLOAD_CHUNK_SIZE, j++)
{
int nTransferBytes = min(nDataBytes - i, UPLOAD_CHUNK_SIZE);
dataBuf.buf = &pszData[i];
dataBuf.len = nTransferBytes;
// Now upload the data
int rc = WSASend(sock, &dataBuf, 1, &dwBytesSent, 0, &g_pSendOverlapped[j], SendCompletionCallback);
if ((rc == SOCKET_ERROR) && (WSA_IO_PENDING != (err = WSAGetLastError())))
{
fprintf(stderr, "WSASend failed: %d\n", err);
exit(EXIT_FAILURE);
}
}
The waiting game
Now we can do whatever we wish while all of the chunks upload.
Note: the thread which called WSASend
must be regularily put into an alertable state, so that our 'transfer completed' callback (SendCompletionCallback) is dequeued out of the APC (Asynchronous Procedure Call) list.
In my code, I continuously looped until g_nUploadChunks == g_nChunksCompleted
. This is to show the end-user upload progress and speed (can be modified to show estimated completion time, elapsed time, etc.)
Note 2: this code uses Plat_FloatTime
as a second counter, replace this with whatever second timer your code uses (or adjust accordingly)
g_flLastUploadTimeReset = Plat_FloatTime();
// Clear the line on the screen with some default data
printf("(0 chunks of %d) Upload speed: ???? KiB/sec", g_nUploadChunks);
// Keep looping until ALL upload chunks have completed
while(g_nChunksCompleted < g_nUploadChunks)
{
// Wait for 10ms so then we aren't repeatedly updating the screen
SleepEx(10, TRUE);
// Updata chunk count
printf("\r(%d chunks of %d) ", g_nChunksCompleted, g_nUploadChunks);
// Not enough time passed?
if(g_flLastUploadTimeReset + 1 > Plat_FloatTime())
continue;
// Reset timer
g_flLastUploadTimeReset = Plat_FloatTime();
// Calculate how many kibibytes have been transmitted in the last second
float flByteRate = g_nBytesSent/1024.0f;
printf("Upload speed: %.2f KiB/sec", flByteRate);
// Reset byte count
g_nBytesSent = 0;
}
// Delete overlapped data (not used anymore)
delete [] g_pSendOverlapped;
// Note that the transfer has completed
Msg("\nTransfer completed successfully!\n");
Conclusion
I really hope this has helped somebody in the future who has wished to calculate upload speed on their TCP sockets without any server-side modifications. I have no idea how performance detrimental SO_SNDBUF = 0
is, although I'm sure a socket guru will point that out.