Don't let people tell you yes. C++ has no concept of an OS, so to say "yes the OS will clean it up" is no longer talking about C++ but about C++ running on some environment, which may not be yours.
That is, if you dynamically allocate something but never free it you've leaked. It can only end its lifetime once you call delete
/delete[]
on it. On some OS's (and almost all desktop OS's), memory will be reclaimed (so other programs may use it.) But memory is not the same as resource! The OS can free all the memory it wants, if you have some socket connection to close, some file to finish writing to, etc, the OS might not do it. It's important not to let resources leak. I've heard of some embedded platforms that won't even reclaim the memory you've not freed, resulting in a leak until the platform is reset.
Instead of dynamically allocating things raw (meaning you're the one that has to explicitly delete it), wrap them into automatically allocated (stack allocated) containers; not doing so is considered bad practice, and makes your code extremely messy.
So don't use new T[N]
, use std::vector<T> v(N);
. The latter won't let a resource leak occur. Don't use new T;
, use smart_ptr p(new T);
. The smart pointer will track the object and delete it when it's know longer used. This is called Scope-bound Resource Management (SBRM, also known as the dumber name Resource-Acquisition is Initialization, or RAII.)
Note there is no single "smart_ptr
". You have to pick which one is best. The current standard includes std::auto_ptr
, but it's quite unwieldy. (It cannot be used in standard containers.) Your best bet is to use the smart pointers part of Boost, or TR1 if your compiler supports it. Then you get shared_ptr
, arguably the most useful smart pointer, but there are many others.
If every pointer to dynamically allocated memory is in an object that will destruct (i.e., not another object that is dynamically allocated), and that object knows to free the memory, that pointer is guaranteed to be freed. This question shouldn't even be a problem, since you should never be in a position to leak.