tags:

views:

31

answers:

2
db = sqlite.connect("test.sqlite")
res = db.execute("select * from table")

With iteration I get lists coresponding to the rows.

for row in res:
    print row

I can get name of the columns

col_name_list = [tuple[0] for tuple in res.description]

But is there some function or setting to get distionaries instead of list?

{'col1': 'value', 'col2': 'value'}

or I have to do myself?

+1  A: 

From PEP 249:

Question: 

   How can I construct a dictionary out of the tuples returned by
   .fetch*():

Answer:

   There are several existing tools available which provide
   helpers for this task. Most of them use the approach of using
   the column names defined in the cursor attribute .description
   as basis for the keys in the row dictionary.

   Note that the reason for not extending the DB API specification
   to also support dictionary return values for the .fetch*()
   methods is that this approach has several drawbacks:

   * Some databases don't support case-sensitive column names or
     auto-convert them to all lowercase or all uppercase
     characters.

   * Columns in the result set which are generated by the query
     (e.g.  using SQL functions) don't map to table column names
     and databases usually generate names for these columns in a
     very database specific way.

   As a result, accessing the columns through dictionary keys
   varies between databases and makes writing portable code
   impossible.

So yes, do it yourself.

Ignacio Vazquez-Abrams
+2  A: 

You could use row_factory, as in the example in the docs:

import sqlite3

def dict_factory(cursor, row):
    d = {}
    for idx, col in enumerate(cursor.description):
        d[col[0]] = row[idx]
    return d

con = sqlite3.connect(":memory:")
con.row_factory = dict_factory
cur = con.cursor()
cur.execute("select 1 as a")
print cur.fetchone()["a"]

or follow the advice that's given right after this example in the docs:

If returning a tuple doesn’t suffice and you want name-based access to columns, you should consider setting row_factory to the highly-optimized sqlite3.Row type. Row provides both index-based and case-insensitive name-based access to columns with almost no memory overhead. It will probably be better than your own custom dictionary-based approach or even a db_row based solution.

Alex Martelli