Hi,
I have some data that is both read and updated by multiple threads. Both reads and writes must be atomic. I was thinking of doing it like this:
// Values must be read and updated atomically
struct SValues
{
double a;
double b;
double c;
double d;
};
class Test
{
public:
Test()
{
m_pValues = &m_values;
}
SValues* LockAndGet()
{
// Spin forver until we got ownership of the pointer
while (true)
{
SValues* pValues = (SValues*)::InterlockedExchange((long*)m_pValues, 0xffffffff);
if (pValues != (SValues*)0xffffffff)
{
return pValues;
}
}
}
void Unlock(SValues* pValues)
{
// Return the pointer so other threads can lock it
::InterlockedExchange((long*)m_pValues, (long)pValues);
}
private:
SValues* m_pValues;
SValues m_values;
};
void TestFunc()
{
Test test;
SValues* pValues = test.LockAndGet();
// Update or read values
test.Unlock(pValues);
}
The data is protected by stealing the pointer to it for every read and write, which should make it threadsafe, but it requires two interlocked instructions for every access. There will be plenty of both reads and writes and I cannot tell in advance if there will be more reads or more writes.
Can it be done more effective than this? This also locks when reading, but since it's quite possible to have more writes then reads there is no point in optimizing for reading, unless it does not inflict a penalty on writing.
I was thinking of reads acquiring the pointer without an interlocked instruction (along with a sequence number), copying the data, and then having a way of telling if the sequence number had changed, in which case it should retry. This would require some memory barriers, though, and I don't know whether or not it could improve the speed.
----- EDIT -----
Thanks all, great comments! I haven't actually run this code, but I will try to compare the current method with a critical section later today (if I get the time). I'm still looking for an optimal solution, so I will get back to the more advanced comments later. Thanks again!