I'm trying to create a list of objects, where each object also stores 'ownership' - ie, it knows which list holds it.
In a non-template situation, it's straightforward:
class FooList; // forward declaration
class FooItem
{
public:
FooList *owner;
...
};
class FooList: private std::list<FooItem>
{
...
};
However, the list class is a template, based on the contained object type, and I'm struggling to work out how to specify this. I reckon the FooItem class now needs to be a template because the type of 'owner' can vary:
template <class E> class FooItem
{
public:
std::list<E> *owner;
};
template <class E> class FooList: private std::list<E>
{
...
};
But, now given my two templates, how can I define the new types I want? The snippet below is what I think I need, but it gives "error: Multiple declaration for BarItem"
.
class BarItem;
typedef FooList<BarItem> BarList;
typedef FooItem<BarList> BarItem;
EDIT:
Thanks to those who pointed out the issue of std::list<E>
instead of std::list<FooItem<E> >
EDIT 2:
Renamed classes to Base, Derived, BaseList, DerivedList.
My real problem was the 'circular typedef'. After some more tinkering, I think this will do what I require. It creates a 'real' BarItem class rather than just a typedef, but seems to at least compile now.
template <class E> class BaseList; // forward declaration
template <class E> class Base
{
public:
BaseList< Base<E> > *owner;
};
template <class E> class BaseList: private std::list< E >
{
};
// typedef Base<BaseList<Derived> > Derived; //This won't compile, unsurprisingly.
class Derived : public Base < BaseList<Derived> > // Surprisingly, this seems to.
{
...
};
typedef BaseList<Derived> DerivedList;
Does this seem to make sense? Is it a common idiom or something horrible?