views:

88

answers:

4

Hi, guys, I got a following peace of base64 encoded data, and I want to use python base64 module to extract information from it? It seems that module does not work. Anyone tells me how?

Q5YACgAAAABDlgAbAAAAAEOWAC0AAAAAQ5YAPwAAAABDlgdNAAAAAEOWB18AAAAAQ5YHcAAAAABDlgeCAAAAAEOWB5QAAAAAQ5YHpkNx8H9Dlge4REqBx0OWB8pEpZ10Q5YH3ES2lxFDlgfuRIuPbEOWB/9EA9SqQ5YIEUIFJtxDlggjAAAAAEOWCDVDDMm3Q5YIR0N5wOtDlghZQ4GkeEOWCGtDD0CbQ5YIfQAAAABDlgiOAAAAAEOWCKAAAAAAQ5YIsgAAAABDlob5AAAAAEOWhwsAAAAAQ5aHHQAAAABDlocvAAAAAEOWh0FBC+dQQ5aHU0NJ9WdDlodlQ9RK6kOWh3dEDRdFQ5aHiUQARjZDloebQ5xn3kOWh61C1TYMQ5aHvwAAAABDlofRAAAAAEOWh+MAAAAAQ5aH9QAAAABDnFl9AAAAAEOcWZAAAAAAQ5xZpAAAAABDnFm3AAAAAEOcWctDH72jQ5xZ3kNDentDnFnxQ0QCp0OcWgVDK52XQ5xaGEMDUuNDnFosAAAAAEOcWj8AAAAAQ5xaUwAAAABDnFpmAAAAAEOcWnkAAAAAQ5xajQAAAABDnFqgAAAAAEOcWrRBnlHwQ5xax0MvOY9DnFraQ6AiZkOcWu5DquEAQ5xbAUNtwQNDnFsVQqVdQEOcWygAAAAAQ5xbPAAAAABDnFtPAAAAAEOcW2IAAAAAQ6Cg+AAAAABDoKEMAAAAAEOgoSEAAAAAQ6ChNQAAAABDoKFKQwi7a0OgoV5DOmAdQ6Chc0NSxE9DoKGHQy7KVUOgoZxCvXN4Q6ChsAAAAABDoKHFAAAAAEOgodkAAAAAQ6Ch7gAAAABDo3scAAAAAEOjezEAAAAAQ6N7RgAAAABDo3tcAAAAAEOje3FCY5O8Q6N7hkOOIjhDo3ubQ+yNhEOje7FD5+CaQ6N7xkN9U2tDo3vbAAAAAEOje/AAAAAAQ6N8BgAAAABDo3wbAAAAAEOjfDAAAAAAQ6QrkgAAAABDpCuoAAAAAEOkK70AAAAAQ6Qr0wAAAABDpCvoQwzvKUOkK/5Db9LnQ6QsE0OMRq5DpCwoQ4WYnEOkLD5DUWd9Q6QsU0MC2p1DpCxpAAAAAEOkLH4AAAAAQ6QskwAAAABDpCypAAAAAEOkLeoAAAAAQ6Qt/wAAAABDpC4VAAAAAEOkLioAAAAAQ6QuQELk8fJDpC5VQzIBUUOkLmpDE3S3Q6QugAAAAABDpC6VAAAAAEOkLqsAAAAAQ6QuwAAAAABDpMIjAAAAAEOkwjkAAAAAQ6TCTgAAAABDpMJkAAAAAEOkwnlDAogtQ6TCj0Nm3ZFDpMKlQ5AQSkOkwrpDdJURQ6TC0ELt1GxDpMLlAAAAAEOkwvsAAAAAQ6TDEAAAAABDpMMmAAAAAEOlUuoAAAAAQ6VTAAAAAABDpVMWAAAAAEOlUysAAAAAQ6VTQUIVw9xDpVNXQztuc0OlU2xDXwOpQ6VTgkLnklxDpVOYAAAAAEOlU64AAAAAQ6VTwwAAAABDpVPZAAAAAEOlgyQAAAAAQ6WDOgAAAABDpYNPAAAAAEOlg2UAAAAAQ6WDewAAAABDpYORAAAAAEOlg6YAAAAAQ6WDvAAAAABDpYPSAAAAAEOlg+gAAAAAQ6WD/QAAAABDpYQTAAAAAEOlhCkAAAAAQ6WEPwAAAABDqiJcAAAAAEOqInMAAAAAQ6oiigAAAABDqiKhAAAAAEOqIrhDOjjhQ6oiz0NL8gFDqiLmQyJ2X0OqIv0AAAAAQ6ojFAAAAABDqiMrAAAAAEOqI0IAAAAAQ6p+EwAAAABDqn4qAAAAAEOqfkEAAAAAQ6p+WAAAAABDqn5vQwzLhUOqfoZDZJlNQ6p+nUOX5SpDqn60Q6at5kOqfstDhSHAQ6p+4kLVJZZDqn75AAAAAEOqfxEAAAAAQ6p/KAAAAABDqn8/AAAAAEOqgZcAAAAAQ6qBrgAAAABDqoHFAAAAAEOqgdwAAAAAQ6qB9EMMs0NDqoILRHyldEOqgiJFFM7eQ6qCOUVg6OJDqoJQRW5RNUOqgmdFL4LSQ6qCfkSe+whDqoKVQydSLUOqgqwAAAAAQ6qCwwAAAABDqoLaAAAAAEOqgvIAAAAAQ6qw0gAAAABDqrDpAAAAAEOqsQAAAAAAQ6qxFwAAAABDqrEuQxCiB0OqsUZDfmUnQ6qxXUOJeMRDqrF0Q1Un5UOqsYtC9lyOQ6qxogAAAABDqrG5AAAAAEOqsdAAAAAAQ6qx6AAAAABDqwGcAAAAAEOrAbMAAAAAQ6sBygAAAABDqwHhAAAAAEOrAflDEU5HQ6sCEEP64TpDqwInRHAAYkOrAj5ElZzIQ6sCVUSCkc9DqwJtRBsdnkOrAoRDRp3HQ6sCm0JJ0uRDqwKyAAAAAEOrAsoAAAAAQ6sC4QAAAABDqwL4AAAAAEOrgUkAAAAAQ6uBYAAAAABDq4F3AAAAAEOrgY8AAAAAQ6uBpkKjOb5Dq4G9Q5AYHEOrgdVD2l3+Q6uB7EPb9xxDq4IDQ5Zv6EOrghtDGbKhQ6uCMgAAAABDq4JKAAAAAEOrgmEAAAAAQ6uCeAAAAABDrHxTAAAAAEOsfGsAAAAAQ6x8gwAAAABDrHyaAAAAAEOsfLIAAAAAQ6x8ykOV3rxDrHzhRCIkR0OsfPlESnsOQ6x9EUQraodDrH0oQ8DC7EOsfUBC5QRmQ6x9VwAAAABDrH1vAAAAAEOsfYcAAAAAQ6x9ngAAAABDsYDPAAAAAEOxgOgAAAAAQ7GBAQAAAABDsYEaAAAAAEOxgTNDHtFFQ7GBTENOOtdDsYFlQzQ0M0OxgX5CsakkQ7GBlwAAAABDsYGwAAAAAEOxgckAAAAAQ7GB4wAAAABDsYfZAAAAAEOxh/IAAAAAQ7GIDAAAAABDsYglAAAAAEOxiD5CNN5kQ7GIV0Mx6h9DsYhwQyLw10OxiIkAAAAAQ7GIokQvuWJDsYi7RTLrZEOxiNRFti0vQ7GI7UX0+WtDsYkGReZyqEOxiR9Fk7sbQ7GJOETYM4ZDsYlRQZhM0EOxiWpDPbMFQ7GJg0EE8DBDsYmcAAAAAEOxibUAAAAAQ7GJzgAAAABDsYnnAAAAAEOyBSwAAAAAQ7IFRgAAAABDsgVfAAAAAEOyBXgAAAAAQ7IFkUMeX/lDsgWqQ1qnIUOyBcNDakzLQ7IF3UNOK1lDsgX2QxcLFUOyBg8AAAAAQ7IGKAAAAABDsgZBAAAAAEOyBloAAAAAQ7IIIAAAAABDsgg5AAAAAEOyCFIAAAAAQ7IIawAAAABDsgiEQGvLQEOyCJ5DjE5EQ7IIt0RT8ohDsgjQRLITDUOyCOlEx/0eQ7IJAkSboYRDsgkbRBrElkOyCTVC8Q1qQ7IJTkNZN6lDsglnQ9HrdEOyCYBD3r0EQ7IJmUOUB7JDsgmyQt1s2EOyCcwAAAAAQ7IJ5QAAAABDsgn+AAAAAEOyChcAAAAAQ7KH1wAAAABDsofwAAAAAEOyiAkAAAAAQ7KIIwAAAABDsog8AAAAAEOyiFVDmdXKQ7KIbkRFmedDsoiIRIyTq0OyiKFEhXFjQ7KIukQk++pDsojUQ2Ti6UOyiO1C59eGQ7KJBgAAAABDsokgQx+8zUOyiTlDW2b7Q7KJUkNhYXFDsolsQw9giUOyiYUAAAAAQ7KJngAAAABDsom4AAAAAEOyidEAAAAAQ7KjJgAAAABDsqNAAAAAAEOyo1kAAAAAQ7KjcwAAAABDsqOMQxiW60Oyo6VDb3iLQ7Kjv0OCiUpDsqPYQ0zvUUOyo/FC2VN+Q7KkCwAAAABDsqQkAAAAAEOypD1CxVtqQ7KkV0NC+C9DsqRwQ3VyJ0OypIlDV0SRQ7Kko0LAkp5DsqS8AAAAAEOypNUAAAAAQ7Kk7wAAAABDsqUIAAAAAEOzgtQAAAAAQ7OC7QAAAABDs4MHAAAAAEOzgyAAAAAAQ7ODOgAAAABDs4NURBZFGEOzg21FAqNDQ7ODh0VyQZRDs4OgRZfF10Ozg7pFheg0Q7OD1EUfaltDs4PtREyHoEOzhAcAAAAAQ7OEIAAAAABDs4Q6AAAAAEOzhFQAAAAAQ7OEbQAAAABDtALeAAAAAEO0AvcAAAAAQ7QDEQAAAABDtAMrAAAAAEO0A0UAAAAAQ7QDXkNQ5IVDtAN4RAIEokO0A5JEHByTQ7QDrEPrpJ5DtAPFQ1wEy0O0A99Cf5dkQ7QD+QAAAABDtAQSAAAAAEO0BCwAAAAAQ7QERgAAAABDtIKCAAAAAEO0gpwAAAAAQ7SCtgAAAABDtILQAAAAAEO0gupCwzHOQ7SDA0NWhYdDtIMdQ6kekkO0gzdD65s+Q7SDUUPZmNxDtINrQ0uJw0O0g4VCwHqAQ7SDnwAAAABDtIO5AAAAAEO0g9MAAAAAQ7SD7AAAAABDuYw1AAAAAEO5jFEAAAAAQ7mMbAAAAABDuYyHAAAAAEO5jKNCQp50Q7mMvkO6WI5DuYzZRC4aE0O5jPVESsfrQ7mNEEQhx9ZDuY0rQ6WBqEO5jUdCGiqoQ7mNYgAAAABDuY19AAAAAEO5jZkAAAAAQ7mNtAAAAABDugxRAAAAAEO6DGwAAAAAQ7oMiAAAAABDugyjAAAAAEO6DL9DFS1NQ7oM2kOCy6BDugz2Q3wf9UO6DRFDKs7FQ7oNLUMkWulDug1IQ1WgIUO6DWRDP0LbQ7oNf0KzSzpDug2bAAAAAEO6DbYAAAAAQ7oN0gAAAABDug3tAAAAAEO6iY0AAAAAQ7qJqQAAAABDuonEAAAAAEO6ieAAAAAAQ7qJ/EKUY+5DuooXQ0F3k0O6ijNDiJBMQ7qKT0OKy05DuopqQ0Uf0UO6ioZCjaAQQ7qKogAAAABDuoq9AAAAAEO6itkAAAAAQ7qK9QAAAABDwis+AAAAAEPCK1wAAAAAQ8IregAAAABDwiuYAAAAAEPCK7ZDIAxFQ8Ir1EM3uZlDwivyQw/DxUPCLBAAAAAAQ8IsLQAAAABDwixLAAAAAEPCLGkAAAAAQ8KrFQAAAABDwqszAAAAAEPCq1EAAAAAQ8KrbwAAAABDwquNQuvJ8kPCq6tDXTspQ8KryUOF7VJDwqvnQ2qgd0PCrAVDWFCVQ8KsJENlY31DwqxCQzBR90PCrGBCks/EQ8KsfgAAAABDwqycAAAAAEPCrLoAAAAAQ8Ks2AAAAABDxaCeAAAAAEPFoL0AAAAAQ8Wg3AAAAABDxaD7AAAAAEPFoRpC6Bm+Q8WhOUNIlwtDxaFYQ0bbiUPFoXdC60cUQ8WhlgAAAABDxaG1AAAAAEPFodQAAAAAQ8Wh8wAAAABDxcLQAAAAAEPFwu8AAAAAQ8XDDgAAAABDxcMuAAAAAEPFw01DCdiTQ8XDbENSEiFDxcOLQzMgqUPFw6pCvkXoQ8XDyQAAAABDxcPoAAAAAEPFxAcAAAAAQ8XEJgAAAABDyqCrAAAAAEPKoMwAAAAAQ8qg7AAAAABDyqENAAAAAEPKoS5DFgyhQ8qhTkNJ8YtDyqFvQyCk7UPKoZAAAAAAQ8qhsAAAAABDyqHRAAAAAEPKofEAAAAAQ86hbQAAAABDzqGPAAAAAEPOobEAAAAAQ86h0wAAAABDzqH1QtiFfkPOohdDN+wBQ86iOEMicXdDzqJaAAAAAEPOonwAAAAAQ86ingAAAABDzqLAAAAAAEPPg5sAAAAAQ8+DvQAAAABDz4PfAAAAAEPPhAEAAAAAQ8+EJAAAAABDz4RGQzv7CUPPhGhEXJabQ8+EikTXGK5Dz4SsRQtcE0PPhM9E/wVMQ8+E8USdi5JDz4UTQ9CGQEPPhTVCsERWQ8+FVwAAAABDz4V6AAAAAEPPhZwAAAAAQ8+FvgAAAABD0AOmAAAAAEPQA8gAAAAAQ9AD6wAAAABD0AQNAAAAAEPQBC9DKyRrQ9AEUkPKA05D0AR0RCwHHUPQBJdEUzZEQ9AEuUQ94dVD0ATbQ/ChWkPQBP5DNpvFQ9AFIEFnWsBD0AVCAAAAAEPQBWUAAAAAQ9AFhwAAAABD0AWqAAAAAEPQg4AAAAAAQ9CDowAAAABD0IPFAAAAAEPQg+gAAAAAQ9CEC0LS1TZD0IQtQ8lMiEPQhFBEAV2PQ9CEckOvPy5D0ISVQhAVCEPQhLcAAAAAQ9CE2gAAAABD0IT8AAAAAEPQhR8AAAAAQ9F+hQAAAABD0X6oAAAAAEPRfssAAAAAQ9F+7gAAAABD0X8RAAAAAEPRfzRDXvi1Q9F/V0Pav3JD0X96Q/VLikPRf5xDwjysQ9F/v0NUF1ND0X/iQkRspEPRgAUAAAAAQ9GAKAAAAABD0YBLAAAAAEPRgG4AAAAAQ9M8gQAAAABD0zykAAAAAEPTPMgAAAAAQ9M86wAAAABD0z0PQyIWp0PTPTJDNPW/Q9M9VkMNGedD0z15AAAAAEPTPZwAAAAAQ9M9wAAAAABD0z3jAAAAAEPUoh8AAAAAQ9SiQwAAAABD1KJmAAAAAEPUoooAAAAAQ9SirkKYjL5D1KLSQy6TTUPUovZDOYDvQ9SjGkLawPpD1KM+AAAAAEPUo2IAAAAAQ9SjhgAAAABD1KOqAAAAAEPWiiwAAAAAQ9aKUQAAAABD1op1AAAAAEPWipoAAAAAQ9aKvkJ42vRD1orjQ6UBeEPWiwhEvTTGQ9aLLEVQripD1otRRZKn/EPWi3VFjjxkQ9aLmkU7lFtD1ou+RI+CDUPWi+NCDiKAQ9aMBwAAAABD1owsAAAAAEPWjFEAAAAAQ9aMdQAAAABD1pV1AAAAAEPWlZoAAAAAQ9aVvgAAAABD1pXjAAAAAEPWlgdC4s80Q9aWLENR95VD1pZQQzhC/0PWlnVC0TaKQ9aWmgAAAABD1pa+AAAAAEPWluMAAAAAQ9aXBwAAAABD1wpKAAAAAEPXCm8AAAAAQ9cKlAAAAABD1wq5AAAAAEPXCt0AAAAAQ9cLAkOM9OhD1wsnREXjmUPXC0xEi3MpQ9cLcER5n2RD1wuVRAxzB0PXC7pDbm1bQ9cL3kND/tdD1wwDQsah9EPXDCgAAAAAQ9cMTQAAAABD1wxxAAAAAEPXDJYAAAAAQ9eKAAAAAABD14olAAAAAEPXikoAAAAAQ9eKbgAAAABD14qTQr6yAkPXirhEAvzPQ9eK3URaCbtD14sCRFjVXEPXiydD7mQkQ9eLTEGr5HhD14txQymzDUPXi5ZDXmm/Q9eLu0MMb99D14vfAAAAAEPXjAQAAAAAQ9eMKQAAAABD14xOAAAAAEPejjkAAAAAQ96OYAAAAABD3o6IAAAAAEPejq8AAAAAQ96O1kLCXcBD3o7+Q82Q4kPejyVEXvwyQ96PTESd1VxD3o90RJ20oEPej5tEXtT0Q96PwkPOWbxD3o/qQwI770PekBFDDeXNQ96QOENBpAdD3pBgQ0iIqUPekIdDNQp7Q96QrkMWx49D3pDWAAAAAEPekP0AAAAAQ96RJAAAAABD3pFMAAAAAEPfDjkAAAAAQ98OYQAAAABD3w6IAAAAAEPfDrAAAAAAQ98O10AISkBD3w7/Qzb5V0PfDyZDvoRSQ98PTkPrjWZD3w91Q8YEBEPfD51DXByZQ98PxEJrbhRD3w/sAAAAAEPfEBMAAAAAQ98QOwAAAABD3xBiAAAAAEPfjlYAAAAAQ9+OfgAAAABD346lAAAAAEPfjs0AAAAAQ9+O9UMmm8lD348cQzD1g0Pfj0RCszhMQ9+PbAAAAABD34+TAAAAAEPfj7sAAAAAQ9+P4wAAAABD6lKzAAAAAEPqUt8AAAAAQ+pTCgAAAABD6lM2AAAAAEPqU2FC6LRAQ+pTjUNNqAVD6lO5Q3Zi/UPqU+RDST1xQ+pUEELOjkRD6lQ8AAAAAEPqVGcAAAAAQ+pUkwAAAABD6lS+AAAAAEPqVOpDFBk7Q+pVFkMzxf9D6lVBQxfgMUPqVW0AAAAAQ+pVmQAAAABD6lXEAAAAAEPqVfAAAAAAQ+qp4gAAAABD6qoOAAAAAEPqqjoAAAAAQ+qqZgAAAABD6qqRQxtGxUPqqr1DM9+nQ+qq6UMaTMlD6qsVAAAAAEPqq0AAAAAAQ+qrbAAAAABD6quYAAAAAEP0hdQAAAAAQ/SGAwAAAABD9IYzAAAAAEP0hmIAAAAAQ/SGkkMtUiND9IbBQ7i2DkP0hvFEDd8PQ/SHIEQVu79D9IdPQ8UR1EP0h39Ca+8EQ/SHrgAAAABD9IfeAAAAAEP0iA0AAAAAQ/SIPQAAAABD+RUtAAAAAEP5FV4AAAAAQ/kVkAAAAABD+RXBAAAAAEP5FfJCVW8oQ/kWJENG0adD+RZVQ1OdY0P5FoZCryaYQ/kWtwAAAABD+RbpAAAAAEP5FxoAAAAAQ/kXSwAAAABD+4xwAAAAAEP7jKIAAAAAQ/uM1AAAAABD+40HAAAAAEP7jTlC9zV6Q/uNa0RTp1JD+42dRNYseUP7jdBFBMwAQ/uOAkTfKPxD+440RHEDqEP7jmZDZQYzQ/uOmQAAAABD+47LAAAAAEP7jv0AAAAAQ/uPLwAAAABD+49iAAAAAEP8DB0AAAAAQ/wMTwAAAABD/AyCAAAAAEP8DLQAAAAAQ/wM50LANKBD/A0ZQzA9l0P8DUxDqOawQ/wNfkQJ8GRD/A2wRBZh8kP8DeNDxvUSQ/wOFUNFkX9D/A5IQ1nIi0P8DnpC1lEYQ/wOrQAAAABD/A7fAAAAAEP8DxIAAAAAQ/wPRAAAAABD/Cl/AAAAAEP8KbIAAAAAQ/wp5AAAAABD/CoXAAAAAEP8KklC/rV+Q/wqfEM2/AlD/CquQ1vrR0P8KuFDXZxtQ/wrE0NO+6lD/CtGQ0CkpUP8K3hDKv/tQ/wrqwAAAABD/CvdAAAAAEP8LBAAAAAAQ/wsQgAAAABEAchdAAAAAEQByHgAAAAARAHIkgAAAABEAcitAAAAAEQByMhDFFQtRAHI40NBZ/VEAcj9Qw4ojUQByRgAAAAARAHJMwAAAABEAclOAAAAAEQByWkAAAAARAiPBQAAAABECI8iAAAAAEQIj0AAAAAARAiPXgAAAABECI97QtIAQEQIj5lDQC1DRAiPt0NUR8tECI/UQyrKL0QIj/IAAAAARAiQDwAAAABECJAtAAAAAEQIkEsAAAAARBAtaQAAAABEEC2KAAAAAEQQLasAAAAARBAtzAAAAABEEC3tQxEM40QQLg5DZaXdRBAuL0NJKXtEEC5QQqsvrkQQLnEAAAAARBAukgAAAABEEC6zAAAAAEQQLtQAAAAARBBHOgAAAABEEEdbAAAAAEQQR3wAAAAARBBHnQAAAABEEEe+QtQGdEQQR99Dknh2RBBIAEQI1vxEEEgiRCYd2UQQSENEA8fXRBBIZEOAHJJEEEiFQqmfKEQQSKYAAAAARBBIxwAAAABEEEjoAAAAAEQQSQkAAAAARBlVmgAAAABEGVW/AAAAAEQZVeQAAAAARBlWCgAAAABEGVYvQyA4p0QZVlRDQEFRRBlWekMn+t9EGVafAAAAAEQZVsUAAAAARBlW6gAAAABEGVcPAAAAAEQeSQgAAAAARB5JMAAAAABEHklYAAAAAEQeSYAAAAAARB5JqEMFcstEHknPQ30s70QeSfdDfp4lRB5KH0Mti5FEHkpHAAAAAEQeSm8AAAAARB5KlgAAAABEHkq+AAAAAEQihscAAAAARCKG8QAAAABEIocbAAAAAEQih0UAAAAARCKHb0OkiJREIoeZRAMjbkQih8NECTC6RCKH7UPBZahEIogXQvNmskQiiEEAAAAARCKIawAAAABEIoiVAAAAAEQiiL8AAAAARCLISQAAAABEIshzAAAAAEQiyJ4AAAAARCLIyAAAAABEIsjyQ0iV30QiyRxDw6BSRCLJRkPte9xEIslwQ83zwkQiyZpDghpaRCLJxAAAAABEIsnuAAAAAEQiyhgAAAAARCLKQwAAAABEJiRvAAAAAEQmJJsAAAAARCYkxgAAAABEJiTyAAAAAEQmJR5DK/KrRCYlSkQjZoJEJiV2RICqBUQmJaJEgim/RCYlzkQvOIxEJiX5Q3y6R0QmJiUAAAAARCYmUQAAAABEJiZ9AAAAAEQmJqkAAAAARCYm1QAAAABEJjcdAAAAAEQmN0kAAAAARCY3dAAAAABEJjegAAAAAEQmN8xDBEj1RCY3+EM/mrtEJjgkQywKXUQmOFAAAAAARCY4fAAAAABEJjioAAAAAEQmONQAAAAARCY4/wAAAABEJjkrAAAAAEQmOVcAAAAARCY5g0JBR6REJjmvQz/4BUQmOdtDc6ohRCY6B0Mj/9NEJjozAAAAAEQmOl8AAAAARCY6iwAAAABEJjq2AAAAAEQmeQ0AAAAARCZ5OQAAAABEJnllAAAAAEQmeZEAAAAARCZ5vUOx1ixEJnnpQ75QAEQmehVDwh7uRCZ6QUO0zPJEJnptQ4qrsEQmepkAAAAARCZ6xQAAAABEJnrxAAAAAEQmex0AAAAARClCpwAAAABEKULUAAAAAEQpQwIAAAAARClDLwAAAABEKUNdQyANz0QpQ4pDSArxRClDuEL7XKZEKUPlAAAAAEQpRBMAAAAARClEQAAAAABEKURuAAAAAEQpXEUAAAAARClccgAAAABEKVygAAAAAEQpXM0AAAAARClc+0Ndlg1EKV0pQ9ngrkQpXVZEBnrCRCldhEPiHNxEKV2xQ3c46UQpXd8AAAAARCleDAAAAABEKV46AAAAAEQpXmgAAAAARC2UcwAAAABELZSjAAAAAEQtlNMAAAAARC2VAwAAAABELZUzQ66+WkQtlWNEAXWBRC2Vk0QB02FELZXCQ51yyEQtlfJBrxGwRC2WIgAAAABELZZSAAAAAEQtloIAAAAARC2WsgAAAABELuKlAAAAAEQu4tUAAAAARC7jBgAAAABELuM2AAAAAEQu42dDJDvtRC7jmEOQDyRELuPIQ5kAzkQu4/lDS6czRC7kKUJQiRBELuRaAAAAAEQu5IsAAAAARC7kuwAAAABELuTsAAAAAEQu5RwAAAAARC7lTQAAAABELuV+AAAAAEQu5a5DOYEhRC7l30Pef6pELuYPRCLAuUQu5kBEQEWRRC7mcERZXENELuahRGN6UkQu5tJEPj+ORC7nAkPumMpELuczQ0sKXUQu52NCYZr8RC7nlAAAAABELufFAAAAAEQu5/UAAAAARC7oJgAAAABEL+anAAAAAEQv5tgAAAAARC/nCQAAAABEL+c7AAAAAEQv52xDL7dZRC/nnUNiVZ1EL+fOQ0JbHUQv5/9CqyhcRC/oMAAAAABEL+hhAAAAAEQv6JMAAAAARC/oxAAAAABEMO0eAAAAAEQw7VAAAAAARDDtgQAAAABEMO2zAAAAAEQw7eVCUT7cRDDuF0PDnb5EMO5IRBZ3E0Qw7npEDDm8RDDurEOnWkBEMO7eQq2XfkQw7w8AAAAARDDvQQAAAABEMO9zAAAAAEQw76UAAAAARDIYsAAAAABEMhjiAAAAAEQyGRQAAAAARDIZRwAAAABEMhl5Qy11O0QyGaxDXkIHRDIZ3kMXpdlEMhoQAAAAAEQyGkNDZT89RDIadUQZnVJEMhqoRD0KeEQyGtpEDWCVRDIbDEM+nSVEMhs/AAAAAEQyG3EAAAAARDIbpAAAAABEMhvWAAAAAEQyHAgAAAAARDJ2+AAAAABEMncqAAAAAEQyd10AAAAARDJ3jwAAAABEMnfCQ6fqRkQyd/VDvIWyRDJ4J0Pn2wREMnhaRAqwhEQyeIxECz0aRDJ4v0PtS9BEMnjyQ8FijkQyeSRDo41YRDJ5VwAAAABEMnmKAAAAAEQyebwAAAAARDJ57wAAAABEM1/LAAAAAEQzX/4AAAAARDNgMQAAAABEM2BkAAAAAEQzYJdDM9+BRDNgy0PSzIBEM2D+RARTb0QzYTFD57s4RDNhZEOeAqxEM2GXAAAAAEQzYcoAAAAARDNh/QAAAABEM2IwAAAAAEQ04ccAAAAARDTh+wAAAABENOIvAAAAAEQ04mMAAAAARDTil0NvUs1ENOLKQ7mM+EQ04v5D2IziRDTjMkPIjeBENONmQ5x0FEQ045oAAAAARDTjzgAAAABENOQCAAAAAEQ05DYAAAAARDTndgAAAABENOeqAAAAAEQ0594AAAAARDToEgAAAABENOhGQoWMvEQ06HpDQjn9RDTorkOZ9sZENOjiQ7LKFEQ06RZDkzI2RDTpSkL3QTJENOl+AAAAAEQ06bIAAAAARDTp5gAAAABENOoaAAAAAEQ129gAAAAARDXcDAAAAABENdxBAAAAAEQ13HUAAAAARDXcqkMUJ6FENdzeQ1KteUQ13RNDdSurRDXdSENhih1ENd18QzJGj0Q13bEAAAAARDXd5QAAAABENd4aAAAAAEQ13k4AAAAARDtfyAAAAABEO2AAAAAAAEQ7YDgAAAAARDtgbwAAAABEO2CnQvuPWkQ7YN9DR2vLRDthF0NP6YFEO2FOQx9lJ0Q7YYYAAAAARDthvgAAAABEO2H2AAAAAEQ7Yi4AAAAARD1dFAAAAABEPV1NAAAAAEQ9XYYAAAAARD1dvwAAAABEPV34Qy/i/UQ9XjFDWMDLRD1eakNLJ+VEPV6jQwls40Q9XtwAAAAARD1fFQAAAABEPV9OAAAAAEQ9X4cAAAAARD1k3wAAAABEPWUYAAAAAEQ9ZVEAAAAARD1ligAAAABEPWXDQqbV1EQ9ZfxDPvz5RD1mNUN8Ak1EPWZuQ4QpLkQ9ZqdDdtHbRD1m4ENV/DVEPWcZQyQAmUQ9Z1EAAAAARD1nigAAAABEPWfDAAAAAEQ9Z/wAAAAAREEeKwAAAABEQR5mAAAAAERBHqEAAAAAREEe3QAAAABEQR8YQtDTRERBH1NDPvx3REEfjkNcAh1EQR/KQ1m890RBIAVDONTfREEgQELxvNJEQSB7AAAAAERBILcAAAAAREEg8gAAAABEQSEtAAAAAERCU3EAAAAAREJTrQAAAABEQlPpAAAAAERCVCUAAAAAREJUYUKXYq5EQlSdQzg4rURCVNlDpapGREJVFUPkLuZEQlVRRBRjCkRCVY1ELIQgREJVyUQk7ZpEQlYFRAlZ1ERCVkFDx9h+REJWfUMY4alEQla5AAAAAERCVvUAAAAAREJXMQAAAABEQldtAAAAAERFh5YAAAAAREWH1AAAAABERYgSAAAAAERFiFAAAAAAREWIjkMWkvtERYjMQ4g29ERFiQpDqf4mREWJSEOyObBERYmGQ6D0xkRFicRDUY2nREWKAkIfGvhERYpAAAAAAERFin4AAAAAREWKvAAAAABERYr6AAAAAERFjiAAAAAAREWOXgAAAABERY6cAAAAAERFjtoAAAAAREWPGEK9GuBERY9WQ2Ml50RFj5RDoK7UREWP0kOl+WhERZAQQ22uP0RFkE5Coc28REWQjAAAAABERZDKAAAAAERFkQgAAAAAREWRRgAAAABER8aUAAAAAERHxtQAAAAAREfHEwAAAABER8dTAAAAAERHx5JDh8FaREfH0UO9DJBER8gRQ9bfKERHyFBDzkoWREfIkEOuMHxER8jPAAAAAERHyQ4AAAAAREfJTgAAAABER8mNAAAAAERIbk4AAAAAREhujgAAAABESG7OAAAAAERIbw4AAAAAREhvTkMM9UlESG+NQ083Y0RIb81DOgL9REhwDUK2XghESHBNAAAAAERIcI0AAAAAREhwzQAAAABESHEMAAAAAERKh+IAAAAAREqIIwAAAABESohkAAAAAERKiKYAAAAAREqI50Lh96RESokoQ35MV0RKiWlDnMTYREqJqkNxeg9ESonrQr2M/kRKii0AAAAAREqKbgAAAABESoqvAAAAAERKivAAAAAAREvFtwAAAABES8X5AAAAAERLxjsAAAAAREvGfQAAAABES8a/QwTfiURLxwFDcL+ZREvHQ0OJfrJES8eFQ2HTSURLx8dDAQzpREvICQAAAABES8hLAAAAAERLyI0AAAAAREvIzwAAAABES8wpAAAAAERLzGsAAAAAREvMrQAAAABES8zvAAAAAERLzTFC78e2REvNc0NWbJ9ES821Q5QpeERLzfdDbnPBREvOOUJOhwhES857AAAAAERLzrwAAAAAREvO/gAAAABES89AAAAAAERMDGoAAAAAREwMrQAAAABETAzvAAAAAERMDTEAAAAAREwNc0MbaL1ETA21Q4XDPkRMDfdDlMa4REwOOkNYuqFETA58QoUC7kRMDr4AAAAAREwPAAAAAABETA9CAAAAAERMD4QAAAAARE+u2AAAAABET68dAAAAAERPr2EAAAAARE+vpgAAAABET6/qQyyLhURPsC9DWN/HRE+wc0NkY0tET7C4QxkM20RPsPwAAAAARE+xQQAAAABET7GFAAAAAERPscoAAAAARFAOCQAAAABEUA5OAAAAAERQDpMAAAAARFAO1wAAAABEUA8cQwDAqURQD2FDdvAjRFAPpkOL1RJEUA/qQ0OKJURQEC9CXTp0RFAQdAAAAABEUBC5AAAAAERQEP4AAAAARFARQgAAAABEVcuoAAAAAERVy/AAAAAARFXMOQAAAABEVcyCAAAAAERVzMpCzsoORFXNE0NaGXFEVc1bQ3R5C0RVzaRDKbY/RFXN7QAAAABEVc41AAAAAERVzn4AAAAARFXOxwAAAABEV5BlAAAAAERXkK4AAAAARFeQ+AAAAABEV5FCAAAAAERXkYxDKSu1RFeR1kNbVSFEV5IgQ1lH20RXkmlDOlYfRFeSs0M4QDVEV5L9Q0YP/0RXk0dDMzG5RFeTkQAAAABEV5PaAAAAAERXlCQAAAAARFeUbgAAAABEV6FpAAAAAERXobMAAAAARFeh/QAAAABEV6JHAAAAAERXopFDDVORRFei20NxGSNEV6MlQ22aoURXo25C9lnCRFejuAAAAABEV6QCAAAAAERXpEwAAAAARFeklgAAAABEV6W9AAAAAERXpgcAAAAARFemUQAAAABEV6abAAAAAERXpuVDLnHjRFenL0M9OBdEV6d5QxBdL0RXp8MAAAAARFeoDQAAAABEV6hWAAAAAERXqKAAAAAARF33JAAAAABEXfdzAAAAAERd98EAAAAARF34DwAAAABEXfheQy+tTURd+KxDS93XRF34+kM42jtEXflIQswuZkRd+ZcAAAAARF355QAAAABEXfozAAAAAERd+oEAAAAARF5M4QAAAABEXk0wAAAAAEReTX4AAAAARF5NzQAAAABEXk4bQrksMkReTmpDvnVcRF5OuEQoL11EXk8HREPcqkReT1VEI/uQRF5PpEPTigZEXk/zQ4LN9kReUEFDX7PhRF5QkAAAAABEXlDeAAAAAEReUS0AAAAARF5RewAAAABEXo0MAAAAAERejVsAAAAARF6NqQAAAABEXo34AAAAAERejkdDA7iRRF6OlUOCrD5EXo7kQ8vYCkRejzND56FuRF6PgUO0Y8BEXo/QQyOz3URekB8AAAAARF6QbgAAAABEXpC8AAAAAERekQsAAAAARF7MvgAAAABEXs0NAAAAAERezVwAAAAARF7NqgAAAABEXs35Q478yERezkhDw2IoRF7Ol0PtNthEXs7mQ+gZFERezzVDnL2ORF7PhAAAAABEXs/TAAAAAERe0CEAAAAARF7QcAAAAABEYs8hAAAAAERiz3MAAAAARGLPxQAAAABEYtAXAAAAAERi0GhCk7m4RGLQukOaFH5EYtEMQ8gFaERi0V1DoL7mRGLRr0MQ5L1EYtIBAAAAAERi0lMAAAAARGLSpAAAAABEYtL2AAAAAERjTncAAAAARGNOyQAAAABEY08bAAAAAERjT20AAAAARGNPv0MdKfNEY1ARQ4lspERjUGNDjNEARGNQtkM/hM9EY1EIQkeJ4ERjUVoAAAAARGNRrAAAAABEY1H+AAAAAERjUlAAAAAARGbfpAAAAABEZt/5AAAAAERm4E4AAAAARGbgogAAAABEZuD3Qw3sj0Rm4UxDPHMvRGbhoEMBtoVEZuH1AAAAAERm4koAAAAARGbingAAAABEZuLzAAAAAERnjyUAAAAARGePegAAAABEZ4/PAAAAAERnkCQAAAAARGeQeULWDGZEZ5DPQ061J0RnkSRDan7BRGeReUNAkQdEZ5HOQuC5/kRnkiMAAAAARGeSeQAAAABEZ5LOAAAAAERnkyMAAAAARG8fawAAAABEbx/GAAAAAERvICEAAAAARG8gfAAAAABEbyDXQrehxkRvITJDR2/vRG8hjUNuIblEbyHnQ1BEK0RvIkJDLuhfRG8inQAAAABEbyL4AAAAAERvI1MAAAAARG8jrgAAAABEcM5fAAAAAERwzrsAAAAARHDPFwAAAABEcM9zAAAAAERwz89DK5xDRHDQK0OGgeZEcNCHQ26Re0Rw0ONC5uMORHDRQAAAAABEcNGcAAAAAERw0fgAAAAARHDSVAAAAABEcQ4hAAAAAERxDn0AAAAARHEO2gAAAABEcQ82AAAAAERxD5JC/8MCRHEP70PZhmhEcRBLRCsGMERxEKdEHpPpRHERBEOzPEpEcRFgQpyPfERxEbwAAAAARHESGQAAAABEcRJ1AAAAAERxEtEAAAAARHFNqQAAAABEcU4FAAAAAERxTmIAAAAARHFOvgAAAABEcU8bQWGokERxT3dDXYpdRHFP1EPRHHxEcVAwQ/Hb1kRxUI1DyFA0RHFQ6UN6Ck1EcVFGQzioDURxUaNDau5XRHFR/0NnQT9EcVJcQxBEBURxUrgAAAAARHFTFQAAAABEcVNxAAAAAERxU84AAAAARHUP2wAAAABEdRA6AAAAAER1EJkAAAAARHUQ+QAAAABEdRFYQoIpDER1EbhDbzAjRHUSF0OZA/BEdRJ2Q5gAnkR1EtZDj7qGRHUTNUN1fidEdROVQxFdtUR1E/QAAAAARHUUUwAAAABEdRSzAAAAAER1FRIAAAAARIFNGgAAAABEgU1PAAAAAESBTYQAAAAARIFNuQAAAABEgU3uQy178USBTiNDb4JRRIFOWEOhvR5EgU6NQ7dIFESBTsNDkg3MRIFO+ELaUAREgU8tAAAAAESBT2IAAAAARIFPlwAAAABEgU/MAAAAAESBpzIAAAAARIGnZwAAAABEgaecAAAAAESBp9IAAAAARIGoB0Jew0REgag9QzrtF0SBqHJDhC78RIGop0NtEDlEgajdQy4kQ0SBqRIAAAAARIGpSAAAAABEgal9AAAAAESBqbMAAAAARIHnXgAAAABEgeeUAAAAAESB58kAAAAARIHn/wAAAABEgeg1QwZ+g0SB6GpDhNUoRIHooEOId6xEgejWQvQoEkSB6QsAAAAARIHpQQAAAABEgel2AAAAAESB6awAAAAARIIHpwAAAABEggfdAAAAAESCCBMAAAAARIIISAAAAABEggh+Qv4nckSCCLRDWj6rRIII6kNbO+tEggkfQwvuw0SCCVUAAAAARIIJiwAAAABEggnBAAAAAESCCfYAAAAARIInlQAAAABEgifLAAAAAESCKAAAAAAARIIoNgAAAABEgihsQpgZsESCKKJDTqwDRIIo2ENlUilEgikOQwzsVUSCKUMAAAAARIIpeQAAAABEgimvAAAAAESCKeUAAAAARIJjZgAAAABEgmOcAAAAAESCY9IAAAAARIJkCAAAAABEgmQ+QxAFj0SCZHRDUubtRIJkq0NEJytEgmThQrRT7ESCZRcAAAAARIJlTQAAAABEgmWDAAAAAESCZbkAAAAARILgJgAAAABEguBcAAAAAESC4JMAAAAARILgyQAAAABEguEAQykld0SC4TZDdX0HRILhbENFmp9EguGjQb3PWESC4dkAAAAARILiEAAAAABEguJGAAAAAESC4n0AAAAARILldwAAAABEguWtAAAAAESC5eMAAAAARILmGgAAAABEguZQQwBjuUSC5odDV6cNRILmvUM6wtdEgub0QqvdxESC5yoAAAAARILnYQAAAABEgueXAAAAAESC580AAAAARIQHrQAAAABEhAflAAAAAESECBwAAAAARIQIVAAAAABEhAiLQ6u3TESECMJDwF2mRIQI+kO6QMBEhAkxQ4fEYkSECWlC/e2yRIQJoAAAAABEhAnXAAAAAESECg8AAAAARIQKRgAAAABEhkcTAAAAAESGR00AAAAARIZHhgAAAABEhke/AAAAAESGR/lDLs0JRIZIMkNUEF9EhkhrQ0uXC0SGSKRDHr1tRIZI3gAAAABEhkkXAAAAAESGSVAAAAAARIZJikL/SApEhknDQ2n1HUSGSfxDaNZfRIZKNULoybBEhkpvAAAAAESGSqgAAAAARIZK4QAAAABEhksbAAAAAESKp1YAAAAARIqnkwAAAABEiqfQAAAAAESKqA0AAAAARIqoSkOZccZEiqiHQ8OX8ESKqMRD0uwsRIqpAUPBGSZEiqk+Q4aumESKqXsAAAAARIqpuAAAAABEiqn1AAAAAESKqjMAAAAARIsHRgAAAABEiweEAAAAAESLB8EAAAAARIsH/gAAAABEiwg8QRzZQESLCHlDOZ21RIsIt0NpEt9Eiwj0Qxy7mUSLCTIAAAAARIsJbwAAAABEiwmsAAAAAESLCepC1l7iRIsKJ0NKJGFEiwplQ2VGDUSLCqJDI96fRIsK3wAAAABEiwsdAAAAAESLC1oAAAAARIsLmAAAAABEi6aPAAAAAESLps0AAAAARIunCgAAAABEi6dIAAAAAESLp4ZDAlSPRIunxEN89OlEi6gCQ36+10SLqEBDKC6nRIuofgAAAABEi6i8AAAAAESLqPoAAAAARIupOAAAAABEi6l2AAAAAESLqbQAAAAARIup8kMy0NNEi6owQ4TQBkSLqm5DkiguRIuqrENtXpdEi6rqQtiDoESLqygAAAAARIurZgAAAABEi6ukAAAAAESLq+IAAAAARIwKEwAAAABEjApRAAAAAESMCpAAAAAARIwKzgAAAABEjAsMQvIq9kSMC0pDZhH9RIwLiUNv6lFEjAvHQzxNeUSMDAVDBf57RIwMRAAAAABEjAyCAAAAAESMDMAAAAAARIwM/wAAAABEjShkAAAAAESNKKMAAAAARI0o4wAAAABEjSkiAAAAAESNKWFDElYDRI0poENEpUlEjSngQ1ahVUSNKh9DTWGbRI0qXkMyvJNEjSqeAAAAAESNKt0AAAAARI0rHAAAAABEjStcAAAAAESNSBMAAAAARI1IUgAAAABEjUiSAAAAAESNSNEAAAAARI1JEEOD/sxEjUlQQ5zD+kSNSY9DiLWwRI1Jz0M8GlVEjUoOQt0cRESNSk0AAAAARI1KjQAAAABEjUrMAAAAAESNSwwAAAAARI38VAAAAABEjfyUAAAAAESN/NQAAAAARI39FAAAAABEjf1UQqmYCkSN/ZRDQgi5RI391EOHro5Ejf4VQ5lPvkSN/lVDkJFWRI3+lUNXxZNEjf7VQt7eVESN/xUAAAAARI3/VQAAAABEjf+VAAAAAESN/9UAAAAARI4DFgAAAABEjgNWAAAAAESOA5YAAAAARI4D1gAAAABEjgQWQqKKNkSOBFZDWtVLRI4ElkORPRJEjgTWQ1hZoUSOBRdCi7n2RI4FVwAAAABEjgWXAAAAAESOBdcAAAAARI4GFwAAAABEkxSUAAAAAESTFNkAAAAARJMVHQAAAABEkxViAAAAAESTFadDJaKtRJMV7ENTNDdEkxYwQysKnUSTFnUAAAAARJMWugAAAABEkxb+AAAAAESTF0MAAAAARJUa0gAAAABElRsZAAAAAESVG18AAAAARJUbpgAAAABElRvtQxH4LUSVHDNDZsFtRJUcekN8raNElRzBQ2M/m0SVHQdDWz+3RJUdTkNrpC1ElR2VQ1qkRUSVHdtDF/M1RJUeIgAAAABElR5pAAAAAESVHq8AAAAARJUe9gAAAABElaatAAAAAESVpvUAAAAARJWnPAAAAABElaeDAAAAAESVp8pDIWOXRJWoEUN/VZNElahYQ1lqnUSVqKBCB/rcRJWo5wAAAABElakuAAAAAESVqXUAAAAARJWpvAAAAABElaoDQjC90ESVqktDb5h/RJWqkkOowJBElarZQ6MNmESVqyBDZaT5RJWrZ0LD4VBElauuAAAAAESVq/YAAAAARJWsPQAAAABElayEAAAAAESWQrAAAAAARJZC+AAAAABElkNAAAAAAESWQ4gAAAAARJZDz0MVJttElkQXQ05HR0SWRF9DPkqdRJZEp0MQVC9ElkTuAAAAAESWRTYAAAAARJZFfgAAAABElkXGAAAAAESWvGkAAAAARJa8sgAAAABElrz6AAAAAESWvUIAAAAARJa9ikKlvF5Elr3SQ1O/L0SWvhtDkrv0RJa+Y0Oe1WZElr6rQ5PuTESWvvNDaqxTRJa/O0MEwgFElr+EAAAAAESWv8wAAAAARJbAFAAAAABElsBcAAAAAESZ16UAAAAARJnX8AAAAABEmdg7AAAAAESZ2IcAAAAARJnY0kH4EwBEmdkdQzrIE0SZ2WhDr/tKRJnZs0PPruhEmdn/Q6dHFESZ2kpDV+ORRJnalUNWgi1EmdrgQ3EyH0SZ2ytDPfUTRJnbd0KWcMBEmdvCAAAAAESZ3A0AAAAARJncWAAAAABEmdykAAAAAESaWekAAAAARJpaNQAAAABEmlqAAAAAAESaWswAAAAARJpbGEMn4mNEmltjQ4AIPESaW69DX28TRJpb+0Krmh5EmlxHAAAAAESaXJIAAAAARJpc3gAAAABEml0qAAAAAESdv/QAAAAARJ3AQwAAAABEncCSAAAAAESdwOEAAAAARJ3BMEI6TyhEncGAQz/wr0Sdwc9DlDxyRJ3CHkOVGYJEncJtQzpUF0SdwrxCKT/gRJ3DCwAAAABEncNaAAAAAESdw6kAAAAARJ3D+AAAAABEpBQCAAAAAESkFFcAAAAARKQUrQAAAABEpBUCAAAAAESkFVhDNdeLRKQVrUNA8RVEpBYDQzh+m0SkFlkAAAAARKQWrgAAAABEpBcEAAAAAESkF1kAAAAARKSmiAAAAABEpKbfAAAAAESkpzUAAAAARKSniwAAAABEpKfhQxLIMUSkqDdDaeADRKSojUNwUU9EpKjjQ0nNC0SkqTpDL+FvRKSpkAAAAABEpKnmAAAAAESkqjwAAAAARKSqkgAAAABEqfuwAAAAAESp/AwAAAAARKn8aAAAAABEqfzEAAAAAESp/SBDNOW9RKn9e0NlYU9Eqf3XQ0R360Sp/jNCwDr2RKn+jwAAAABEqf7rAAAAAESp/0YAAAAARKn/ogAAAABErEarAAAAAESsRwoAAAAARKxHaAAAAABErEfGAAAAAESsSCVCE4y4RKxIg0NICpdErEjhQ4IvIkSsSUBDKx7dRKxJngAAAABErEn8AAAAAESsSloAAAAARKxKuQAAAABEtQkRAAAAAES1CXkAAAAARLUJ4QAAAABEtQpKAAAAAES1CrJDJhD9RLULGkN2IZtEtQuCQ0j6M0S1C+pCqdwmRLUMUgAAAABEtQy6AAAAAES1DSMAAAAARLUNiwAAAABEt1aPAAAAAES3VvkAAAAARLdXZAAAAABEt1fPAAAAAES3WDpDesoPRLdYpUPA01ZEt1kPQ9YeGkS3WXpDvpdCRLdZ5UOX1rpEt1pQAAAAAES3WrsAAAAARLdbJgAAAABEt1uQAAAAAETFGvIAAAAARMUbbQAAAABExRvpAAAAAETFHGQAAAAARMUc30JvoHRExR1bQ31mOUTFHdZDt+aSRMUeUkPAB3pExR7NQ6mPcETFH0lDgLBwRMUfxEMHHK9ExSBAAAAAAETFILsAAAAARMUhNwAAAABExSGyAAAAAETHFHgAAAAARMcU9gAAAABExxV0AAAAAETHFfIAAAAARMcWcEM1n/lExxbuQ1u19UTHF2xDRxs7RMcX6kLjC6ZExxhoAAAAAETHGOYAAAAARMcZZAAAAABExxniAAAAAETH/rQAAAAARMf/MwAAAABEx/+yAAAAAETIADEAAAAA
+1  A: 
import base64
coded_string = '''Q5YACgA...'
base64.b64decode(coded_string)

worked for me. At the risk of pasting an offensively-long result, I got:

>>> base64.b64decode(coded_string)
2: 'C\x96\x00\n\x00\x00\x00\x00C\x96\x00\x1b\x00\x00\x00\x00C\x96\x00-\x00\x00\x00\x00C\x96\x00?\x00\x00\x00\x00C\x96\x07M\x00\x00\x00\x00C\x96\x07_\x00\x00\x00\x00C\x96\x07p\x00\x00\x00\x00C\x96\x07\x82\x00\x00\x00\x00C\x96\x07\x94\x00\x00\x00\x00C\x96\x07\xa6Cq\xf0\x7fC\x96\x07\xb8DJ\x81\xc7C\x96\x07\xcaD\xa5\x9dtC\x96\x07\xdcD\xb6\x97\x11C\x96\x07\xeeD\x8b\x8flC\x96\x07\xffD\x03\xd4\xaaC\x96\x08\x11B\x05&\xdcC\x96\x08#\x00\x00\x00\x00C\x96\x085C\x0c\xc9\xb7C\x96\x08GCy\xc0\xebC\x96\x08YC\x81\xa4xC\x96\x08kC\x0f@\x9bC\x96\x08}\x00\x00\x00\x00C\x96\x08\x8e\x00\x00\x00\x00C\x96\x08\xa0\x00\x00\x00\x00C\x96\x08\xb2\x00\x00\x00\x00C\x96\x86\xf9\x00\x00\x00\x00C\x96\x87\x0b\x00\x00\x00\x00C\x96\x87\x1d\x00\x00\x00\x00C\x96\x87/\x00\x00\x00\x00C\x96\x87AA\x0b\xe7PC\x96\x87SCI\xf5gC\x96\x87eC\xd4J\xeaC\x96\x87wD\r\x17EC\x96\x87\x89D\x00F6C\x96\x87\x9bC\x9cg\xdeC\x96\x87\xadB\xd56\x0cC\x96\x87\xbf\x00\x00\x00\x00C\x96\x87\xd1\x00\x00\x00\x00C\x96\x87\xe3\x00\x00\x00\x00C\x96\x87\xf5\x00\x00\x00\x00C\x9cY}\x00\x00\x00\x00C\x9cY\x90\x00\x00\x00\x00C\x9cY\xa4\x00\x00\x00\x00C\x9cY\xb7\x00\x00\x00\x00C\x9cY\xcbC\x1f\xbd\xa3C\x9cY\xdeCCz{C\x9cY\xf1CD\x02\xa7C\x9cZ\x05C+\x9d\x97C\x9cZ\x18C\x03R\xe3C\x9cZ,\x00\x00\x00\x00C\x9cZ?
[stuff omitted as it exceeded SO's body length limits]
\xbb\x00\x00\x00\x00D\xc5!7\x00\x00\x00\x00D\xc5!\xb2\x00\x00\x00\x00D\xc7\x14x\x00\x00\x00\x00D\xc7\x14\xf6\x00\x00\x00\x00D\xc7\x15t\x00\x00\x00\x00D\xc7\x15\xf2\x00\x00\x00\x00D\xc7\x16pC5\x9f\xf9D\xc7\x16\xeeC[\xb5\xf5D\xc7\x17lCG\x1b;D\xc7\x17\xeaB\xe3\x0b\xa6D\xc7\x18h\x00\x00\x00\x00D\xc7\x18\xe6\x00\x00\x00\x00D\xc7\x19d\x00\x00\x00\x00D\xc7\x19\xe2\x00\x00\x00\x00D\xc7\xfe\xb4\x00\x00\x00\x00D\xc7\xff3\x00\x00\x00\x00D\xc7\xff\xb2\x00\x00\x00\x00D\xc8\x001\x00\x00\x00\x00'

What problem are you having, specifically?

Blair Conrad
I have exactlly the same process as you did, but what are the results ?
ladyfafa
A: 

i used chardet to detect possible encoding of this data ( if its text ), but get {'confidence': 0.0, 'encoding': None}. Then i tried to use pickle.load and get nothing again. I tried to save this as file , test many different formats and failed here too. Maybe you tell us what type have this 16512 bytes of mysterious data?

Odomontois
I am sorry, I dont know it either, but I got a c++ code to deal with this data, but I dont know how to post the c++ code here in a right formate, seems to be too long (like -200 characters left) to be posted here :(
ladyfafa
maybe the C++ code is the key to this mysterious data, but I was puzzled by it actually, I mean I need to work with python to decode it correctly
ladyfafa
@ Odomontois, thanks for your work :)
ladyfafa
post at pastebin.com and give us the link. Problem bust be in different charmaps for base64 encoding and decoding.
Odomontois
Ok, I try, thank you
ladyfafa
http://pastebin.com/XVgCSjAG
ladyfafa
that's the link of the c++ code :)
ladyfafa
let me know if you could see it, thanks a lot
ladyfafa
I'm fairly bad with C++, but it does seem that the code is pulling out a 32-bit float, big-endian, like I was trying to do. I can't tell what the structure of `peak p` is, but I think that's what you just have to feed to `struct.unpack`
Nick T
me neither, could be a structure for storing those elements
ladyfafa
+1  A: 

Interesting if maddening puzzle...but here's the best I could get:

The data seems to repeat every 8 bytes or so.

import struct
import base64

target = \
r'''Q5YACgAAAABDlgAbAAAAAEOWAC0AAAAAQ5YAPwAAAABDlgdNAAAAAEOWB18AAAAAQ5YH 
[snip.]
ZAAAAABExxniAAAAAETH/rQAAAAARMf/MwAAAABEx/+yAAAAAETIADEAAAAA''' 

dtgt = base64.b64decode(target)

format = ">ff"
for i in range(100):
    print struct.unpack_from(format,dtgt,8*i)

That gives output like (these lines are randomly selected from the first 100):

(300.00030517578125, 0.0)
(300.05975341796875, 241.93943786621094)
(301.05612182617187, 0.0)
(301.05667114257812, 8.7439727783203125)
(326.9617919921875, 0.0)
(326.96826171875, 0.0)
(328.34432983398438, 280.55218505859375)

That first number does seem to monotonically increase through the entire set.

format = 'hhhh' (possibly with various paddings/directions (e.g. '<hhhh', '<xhhhh') also might be worth a look (again, random lines):

(-27069, 2560, 0, 0)
(-27069, 8968, 0, 0)
(-27069, 13576, 3139, -18487)
(-27069, 18184, 31043, -5184)
(-27069, -25721, -25533, -8601)
(-27069, -7289, 0, 0)
(-25533, 31066, 0, 0)
(-25533, -29350, 0, 0)
(-25533, 25179, 0, 0)
(-24509, -1888, 0, 0)
(-24509, -4447, 0, 0)
(-23741, -14725, 32067, 27475)
(-23741, -3973, 0, 0)
(-23485, 4908, -29629, -20922)
Nick T
@Nick T, thanks, first of all, I think the first value should be positive, because it stands for the mass of a molecule, could never be a negative value; secondly, the toal number of elements in one of these tuples shall bestly be 3, that's all what I could guess about this data, they should be mass, intensity and time respectively
ladyfafa
it is absolutely right the mass goes in an ascending way "monotonically increase", suppose it is value on the x-axis, from 0 to an adequate maximum, whereas the intensity of this mass might vary sharply
ladyfafa
So this is data from a GC-MS? Try different formats, see http://docs.python.org/library/struct.html maybe `'>fhh'` or `'>fHH'`
Nick T
exactlly! you are genious, for sure :)
ladyfafa
how you know it is a GC-MS? have you worked on it before?
ladyfafa
I only used a GC-MS a few times in lab, but doesn't it just kick out an intensity vs. time plot? Mass we had to derive from time, calibrated with some known compounds.
Nick T
But you really knows it, I think the ultimate goal is to find the proteins, still halfway into it though. thanks for all your help :)
ladyfafa
A: 

After decoding, it looks like the data is a repeating structure that's 8 bytes long, or some multiple thereof. It's just binary data though; what it might mean, I have no idea. There are 2064 entries, which means that it could be a list of 2064 8-byte items down to 129 128-byte items.

Walter Mundt
@Walter Mundt, thank you:))
ladyfafa
How to know that there are 2064 entries?
ladyfafa
Oh, i see, length of the decoded divided by 8
ladyfafa