Binomial coefficient is one factorial divided by two others, although the k!
term on the bottom cancels in an obvious way.
Observe that if 1009, (including multiples of it), appears more times in the numerator than the denominator, then the answer mod 1009 is 0. It can't appear more times in the denominator than the numerator (since binomial coefficients are integers), hence the only cases where you have to do anything are when it appears the same number of times in both. Don't forget to count multiples of (1009)^2 as two, and so on.
After that, I think you're just mopping up small cases (meaning small numbers of values to multiply/divide), although I'm not sure without a few tests. On the plus side 1009 is prime, so arithmetic modulo 1009 takes place in a field, which means that after casting out multiples of 1009 from both top and bottom, you can do the rest of the multiplication and division mod 1009 in any order.
Where there are non-small cases left, they will still involve multiplying together long runs of consecutive integers. This can be simplified by knowing 1008! (mod 1009)
. It's -1 (1008 if you prefer), since 1 ... 1008 are the p-1
non-zero elements of the prime field over p
. Therefore they consist of 1, -1, and then (p-3)/2
pairs of multiplicative inverses.
So for example consider the case of C((1009^3), 200).
Imagine that the number of 1009s are equal (don't know if they are, because I haven't coded a formula to find out), so that this is a case requiring work.
On the top we have 201 ... 1008, which we'll have to calculate or look up in a precomputed table, then 1009, then 1010 ... 2017, 2018, 2019 ... 3026, 3027, etc. The ... ranges are all -1, so we just need to know how many such ranges there are.
That leaves 1009, 2018, 3027, which once we've cancelled them with 1009's from the bottom will just be 1, 2, 3, ... 1008, 1010, ..., plus some multiples of 1009^2, which again we'll cancel and leave ourselves with consecutive integers to multiply.
We can do something very similar with the bottom to compute the product mod 1009 of "1 ... 1009^3 - 200 with all the powers of 1009 divided out". That leaves us with a division in a prime field. IIRC that's tricky in principle, but 1009 is a small enough number that we can manage 1000 of them (the upper limit on the number of test cases).
Of course with k=200, there's an enormous overlap which could be cancelled more directly. That's what I meant by small cases and non-small cases: I've treated it like a non-small case, when in fact we could get away with just "brute-forcing" this one, by calculating ((1009^3-199) * ... * 1009^3) / 200!