Short question: Given a point P and a line segment L, how do I find the point (or points) on L that are exactly X distance from P, if it guaranteed that there is such a point?
The longer way to ask this question is with an image. Given two circles, one static and one dynamic, if you move the dynamic one towards the static one in a straight line, it's pretty easy to determine the point of contact (see 1, the green dot).
Now, if you move the dynamic circle towards the static circle at an angle, determining the point of contact is much more difficult, (see 2, the purple dot). That part I already have done. What I want to do is, after determining the point of contact, decrease the angle and determine the new point of contact (see 3, 4, the red dot).
In #4, you can see the angle is decreased by less than half, and the new point of contact is half-way between the straight-line point and the original point. In #7, you can see the angle is bisected, but the new point of contact moves much farther than half way back towards the straight-line point.
In my case, I always want to decrease the angle to 5/6ths its original value, but the original angle and distance between the circles are variable. The circles are all the same radius. The actual data I need after decreasing the angle is the vector between the new center of the dynamic circle and the static circle, that is, the blue line in 3, 4, 6, and 7, if that makes the calculation any easier.
So far, I know I have to move the dynamic circle along the line that the purple circle is a center of, towards the center of the static circle. Then the circle has to move directly back towards the original position of the dynamic circle. The hard part is knowing exactly how far back it has to move so that it's just touching the other circle.