I have an open-source Atari 2600 emulator (Z26), and I'd like to add support for cartridges containing an embedded ARM processor (NXP 21xx family). The idea would be to simulate the 6507 until it tries to read or write a byte of memory (which it will do every 841ns). If the 6507 performs a write, put the address and data on some of the ARM's I/O ports and let the ARM code run 20 cycles, confirm that the ARM is floating its data bus, and let the ARM run for another 38 cycles. If the 6507 performs a read, put the address on the ARM's I/O ports, let the ARM run 38 cycles, grab the data from the ARM's I/O port (hopefully the ARM software will have put it there), and let the ARM run another 20 cycles.
The ARM7 seems pretty straightforward to implement; I don't need to simulate a whole lot of hardware features. Any thoughts?
Edit What I have in mind would be a routine that would take as a parameter a struct holding the machine state and pointers to a memory access routine. When called, the routine would emulate the ARM's instruction engine, generating appropriate reads, writes, and code fetches. I could then write the memory access routine to regard appropriate areas as flash (with roughly-approximated wait states), RAM, I/O ports, and timer registers. Some other areas would be marked as don't-care, and accesses to any other areas would flag an error and stop the emulator.
Perhaps QEMU uses such a thing internally. Since the ARM emulation would be integrated into an already-existing emulation engine (which I didn't write and don't fully understand--the only parts of Z26 I've patched have been the memory read/write logic) I would need something with a fairly small footprint.
Any idea how QEMU works inside? Any idea what the GPL licence would require if I just use 2% of the code in QEMU--whether I'd have to bundle the code for the whole thing, or just the part that I use, or what?