I was thinking about ways to solve this other question about counting the number of values whose digits sum to a target, and decided to try the case where the range was of the form [0, n^base). So essentially you get N independent digits to work with, which is a simpler problem.
The number of ways N natural numbers can sum to a target T is easy to compute. If you think of it as placing N-1 dividers among T sticks, you should see the answer is (T+N-1)!/(T!(N-1)!).
However, our N natural numbers are restricted to [0, base) and so there will be fewer possibilities. I want to find a simple formula for this case as well.
The first thing I considered was deducting the number of possibilities where 'base' of the sticks had been replaced with a 'big stick'. Unfortunately, some possibilities are double counted because they have multiple places a 'big stick' could be inserted.
Any ideas?