I would like to apply some function on each row of a dataframe in R.
The function can return a single-row dataframe or nothing (I guess 'return ()' return nothing?).
I would like to apply this function on each of the rows of a given dataframe, and get the resulting dataframe (which is possibly shorter, i.e. has less rows, than the original one).
For example, if the original dataframe is something like:
id size name
1 100 dave
2 200 sarah
3 50 ben
And the function I'm using gets a row n the dataframe (i.e. a single-row dataframe), returns it as-is if the name rhymes with "brave", otherwise returns null, then the result should be:
id size name
1 100 dave
This example actually refers to filtering a dataframe, and I would love to get both an answer specific to this kind of task but also to a more general case when even the result of the helper function (the one that operates on a single row) may be an arbitrary data frame with a single row. Please note than even in the case of filtering, I would like to use some sophisticated logic (not something simple like $size>100
, but a more complex condition that is checked by a function, let's say boo(single_row_df)
.
P.s.
What I have done so far in these cases is to use apply(df, MARGIN=1)
then do.call(rbind ...)
but I think it give me some trouble when my dataframe only has a single row (I get Error in do.call(rbind, filterd) : second argument must be a list
)
UPDATE
Following Stephen reply I did the following:
ranges.filter <- function(ranges,boo) {
subset(x=ranges,subset=!any(boo[start:end]))
}
I then call ranges.filter
with some ranges dataframe that looks like this:
start end
100 200
250 400
698 1520
1988 2147
...
and some boolean vector
(TRUE,FALSE,TRUE,TRUE,TRUE,...)
I want to filter out any ranges that contain a TRUE value from the boolean vector. For example, the first range 100 .. 200
will be left in the data frame iff the boolean vector is FALSE
in positions 100 .. 200
.
This seems to do the work, but I get a warning saying numerical expression has 53 elements: only the first used
.