Let's say I have an increasing sequence of integers: seq = [1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4 ... ] not guaranteed to have exactly the same number of each integer but guaranteed to be increasing by 1.
Is there a function F that can operate on this sequence whereby F(seq, x) would give me all 1's when an integer in the sequence equals x and all other integers would be 0.
For example:
t = [1, 1, 1, 1, 2, 2, 3, 3, 3, 4]
F(t, 2) = [0, 0, 0, 0, 1, 1, 0, 0, 0, 0]
EDIT: I probably should have made it more clear. Is there a solution where I can do some algebraic operations on the entire array to get the desired result, without iterating over it?
So, I'm wondering if I can do something like: F(t, x) = t op x ?
In Python (t is a numpy.array) it could be:
(t * -1) % x or something...
EDIT2: I found out that the identity function I(t[i] == x) is acceptable to use as an algebraic operation. Sorry, I did not know about identity functions.