Is there an efficient algorithm for finding all sequences of k non-negative integers that sum to n, while avoiding rotations (completely, if possible)? The order matters, but rotations are redundant for the problem I'm working on.
For example, with k = 3 and n = 3, I would want to get a list like the following:
(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 1, 1).
The tuple (0, 3, 0) should not be on the list, since it is a rotation of (3, 0, 0). However, (0, 3, 0) could be in the list instead of (3, 0, 0). Note that both (2, 1, 0) and (2, 0, 1) are on the list -- I do not want to avoid all permutations of a tuple, just rotations. Additionally, 0 is a valid entry -- I am not looking for partitions of n.
My current procedure is to loop from over 1 <= i <= n, set the first entry equal to i, and then recursively solve the problem for n' = n - i and k' = k - 1. I get some speed-up by mandating that no entry is strictly greater than the first, but this approach still generate a lot of rotations -- for example, given n = 4 and k = 3, both (2,2,0) and (2,0,2) are in the output list.
Edit: Added clarifications in bold. I apologize for not making these issues as clear as I should have in the original post.