Bear with me because I'm self taught in C++ and am spending my limited extra time on the job to try to learn more about it (I'm a chemical engineering researcher by day).
I have a pretty simple objective: 1. Make a size-safe container to store a long list of floats. 2. Make a specialized version of that container that acts as a matrix.
What I've come up with thus far, based on some feedback on various questions I've posed here is:
template<typename T>
class VectorDeque
{
public:
void resize_index(unsigned int index) {
if ( my_container == VECTOR ) {
try {
my_vector.resize(index);
my_container = VECTOR;
}
catch(std::bad_alloc &e) {
my_deque.resize(index);
my_container = DEQUE;
}
}
else if ( my_container == DEQUE ) {
my_deque.resize(index);
}
}
T operator[](unsigned int index) {
T ret_val;
if ( STORAGE_CONTAINER == VECTOR ) {
ret_val = my_vector[index];
}
else if ( STORAGE_CONTAINER == DEQUE ) {
ret_val = my_deque[index];
}
}
private:
enum STORAGE_CONTAINER { NONE, DEQUE, VECTOR };
std::vector<T> my_vector;
std::deque<T> my_deque;
STORAGE_CONTAINER my_container;
T& get(int index) {
T temp_val;
if(my_container == VECTOR) {
temp_val = my_vector[index];
}
else if(my_container == DEQUE) {
temp_val = my_deque[index];
}
return temp_val;
}
};
template<typename T>
class VectorDeque2D: public VectorDeque<T>
{
public:
template<typename T>
class VectorDeque2D_Inner_Set
{
VectorDeque2D& parent;
int first_index;
public:
// Just init the temp object
VectorDeque2D_Inner_Set(My2D& p, int first_Index) :
parent(p),
first_Index(first_index) {}
// Here we get the value.
T& operator[](int second_index) const
{ return parent.get(first_index,second_index);}
};
// Return an object that defines its own operator[] that will access the data.
// The temp object is very trivial and just allows access to the data via
// operator[]
VectorDeque2D_Inner_Set<T> operator[](unsigned int first_index) {
return VectorDeque2D_Inner_Set<T>(*this, first_index);
}
void resize_index_second(unsigned int second_index) {
if ( my_container == VECTOR ) {
try {
for (unsigned int couter=0;couter < my_vector.size(); counter++) {
my_vector[counter].resize(second_index);
}
my_container = VECTOR;
}
catch(std::bad_alloc &e) {
for (unsigned int couter=0;couter < my_deque.size(); counter++) {
my_deque[counter].resize(second_index);
}
my_container = DEQUE;
}
}
else if ( my_container == DEQUE ) {
for (unsigned int couter=0;couter < my_deque.size(); counter++) {
my_deque[counter].resize(second_index);
}
}
}
void resize(unsigned int first_index,
unsigned int second_index) {
if ( my_container == VECTOR ) {
try {
my_vector.resize(first_index);
for (unsigned int couter=0;couter < my_vector.size(); counter++) {
my_vector[counter].resize(second_index);
}
my_container = VECTOR;
}
catch(std::bad_alloc &e) {
my_deque.resize(first_index);
for (unsigned int couter=0;couter < my_deque.size(); counter++) {
my_deque[counter].resize(second_index);
}
my_container = DEQUE;
}
}
else if ( my_container == DEQUE ) {
my_deque.resize(first_index);
for (unsigned int couter=0;couter < my_deque.size(); counter++) {
my_deque[counter].resize(second_index);
}
}
}
private:
enum STORAGE_CONTAINER { NONE, DEQUE, VECTOR };
friend class VectorDeque2D_Inner_Set;
std::vector<std::vector<T> > my_vector;
std::deque<std::deque<T> > my_deque;
STORAGE_CONTAINER my_container;
T& get(int first_index,int second_index) {
T temp_val;
if(my_container == VECTOR) {
temp_val = my_vector[first_index][second_index];
}
else if(my_container == DEQUE) {
temp_val = my_deque[first_index][second_index];
}
return temp_val;
}
};
With this implementation I tried to:
1. Present the user of the wrapper with two options for access (".get(x,y)" and "[x][y]")
2. Maximize reuse by having a based wrapped class and then inheriting it to make the matrix.
3. Solve the problem of transitioning from a vector to a deque if the continuous memory limit is hit.
Does this seem like a decent solution? Suggestions?