I think there are two things to learning math:
1. Learning the general techniques. Ie how to add two fractions, how to differentiate, integrate.
2. Learning to problem solve and apply math to the real world.
I think by picking up math textbooks yo will learn 1. Many math textbooks are organized by section where there will be a few pages showing you a technique and then a bunch of problems. The problems tend to be related to the technique that you just learned and very similar. Ie a section on logarithms will have all problems on logarithms and probably won't include any polynomials. By doing the problems in the section you will learn the techniques. The more problems you do the faster you will get and the more you will understand the concepts. Many times you will find if you work through the problems without explicitly memorizing the formulas, you will find that after you do enough the required formulas will be implicitly memorized. Ultimately if you are having trouble looking at probability formulas you will want to read a probability book. If you are having trouble with sum notation you will want to consult that section of an algebra book, etc...
To learn 2 I think math textbooks don't help as much because each section tends to have problems related to that section. Occasionally there are a few "mixed review" problems or a "chapter review" which mixes problems, but they are typically far in between. Science textbooks like Physics, Biology, Chemistry, etc. tend to be better for this. There you often read the problem, lay it out, and end up using a variety of mathematical tools to to solve it. Sometimes calculus, linear algebra, and geometry all within the same problem. The value here is that it teaches you to problem solve. Generally the SAT/GRE do not test if you know how to do Algebra, they test if you know how to apply it to the real world, and the science problems really help you here. Also programming in general is about problem solving and the better you get at problem solving the better you'll be at programming. Basically in programming you take problems, create a mental model, design a solution, and then model it in your programming language of choice. This is similar to say Physics. You look at the problem, extract a mathematical model, design a solution, right down some equations with the model of the solution, then plug numbers in. I highly recommend physics because after my college physics class word problems became simple for me and they used to be quite difficult (though not impossible).
In day to day programming you probably won't use more than algebra and logic (for if statements and loop conditions). There are some places that use high math like computer games, cryptology, data mining, etc. but for a typical business application you probably won't use more than algebra and logic and maybe a bit of set theory (the stuff so basic you already internalized it). Even in places that use high math (like financial companies) often the business users (or some industry literature) will have done the higher math and you will just need to implement the equations (with some algebra). I only mention this because most programming books don't have more than algebra and logic either, unless you are reading textbooks on Algorithm Analysis (Introduction to Algorithms), Artificial Intelligence, or some other research area. General application books on how to do things are usually short on math.
But depending upon what you are reading math can help. For most computer science algebra + discrete math should be enough. Couple that with some physics practice and you should be good to go. It may still be a slow go but you should have the proper background.