It is not possible to determine all accesses to memory, since it doesn't make much sense. An access to memory could be executing next instruction (program resides in memory), or when your program reads or write a variable, so your program is almost accessing memory all the time.
What could be more interesting for you could be follow the memory usage of your program (both heap and stack). In this case you can use standard top command.
You could also monitor system calls (i.e. to write to disk or to attach/alloc a shared memory segment). In this case you should use strace command.
A more complete control to do everything would be debugging your program by means of gdb debugger. It lets you control your program such as setting breakpoints to a variable so the program is interrputed whenever it is read or written (maybe this is what you were looking for). On the other hand GDB can be tricky to learn so DDD, which is a gtk graphical frontend will help you starting out with it.
Update: What you are looking for is really low level memory access that it is not available at user level (that is the task of the kernel of the operating system). I am not sure if even L1 cache management is handled transparently by CPU and hidden to kernel.
What is clear is that you need to go as down as kernel level, so KDB, explained here o KDBG, explained here.
Update 2: It seems that Linux kernel does handle CPU cache but only L1 cache. The book Understanding the Linux Virtual Memory Manager explais how memory management of Linux kernel works. This chapter explains some of the guts of L1 cache handling.