I have two templates for creating customized allocators; the first works automagically if it is used on a custom type:
template<>
class std::allocator<MY_TYPE>
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef MY_TYPE* pointer;
typedef const MY_TYPE* const_pointer;
typedef MY_TYPE& reference;
typedef const MY_TYPE& const_reference;
typedef MY_TYPE value_type;
template <class U>
struct rebind
{
typedef std::allocator<U> other;
};
pointer allocate(size_type n, std::allocator<void>::const_pointer hint = 0)
{
return reinterpret_cast<pointer>(ALLOC_FUNC(n * sizeof(T)));
}
void construct(pointer p, const_reference val)
{
::new(p) T(val);
}
void destroy(pointer p)
{
p->~T();
}
void deallocate(pointer p, size_type n)
{
FREE_FUNC(p);
}
size_type max_size() const throw()
{
// return ~size_type(0); -- Error, fixed according to Constantin's comment
return std::numeric_limits<size_t>::max()/sizeof(MY_TYPE);
}
};
The second is used when we want to have our own allocator for a predefined type with a standard allocator, for instance char, wchar_t, std::string, etc.:
namespace MY_NAMESPACE
{
template <class T> class allocator;
// specialize for void:
template <>
class allocator<void>
{
public:
typedef void* pointer;
typedef const void* const_pointer;
// reference to void members are impossible.
typedef void value_type;
template <class U>
struct rebind
{
typedef allocator<U> other;
};
};
template <class T>
class allocator
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef T value_type;
template <class U>
struct rebind
{
typedef allocator<U> other;
};
allocator() throw()
{
}
template <class U>
allocator(const allocator<U>& u) throw()
{
}
~allocator() throw()
{
}
pointer address(reference r) const
{
return &r;
}
const_pointer address(const_reference r) const
{
return &r;
}
size_type max_size() const throw()
{
// return ~size_type(0); -- Error, fixed according to Constantin's comment
return std::numeric_limits<size_t>::max()/sizeof(T);
}
pointer allocate(size_type n, allocator<void>::const_pointer hint = 0)
{
return reinterpret_cast<pointer>(ALLOC_FUNC(n * sizeof(T)));
}
void deallocate(pointer p, size_type n)
{
FREE_FUNC(p);
}
void construct(pointer p, const_reference val)
{
::new(p) T(val);
}
void destroy(pointer p)
{
p->~T();
}
};
template <class T1, class T2>
inline
bool operator==(const allocator<T1>& a1, const allocator<T2>& a2) throw()
{
return true;
}
template <class T1, class T2>
inline
bool operator!=(const allocator<T1>& a1, const allocator<T2>& a2) throw()
{
return false;
}
}
The first template above, for your own defined type, does not require any further handling but is used automatically by the standard container classes. The second template requires further work when used on a standard type. For std::string, for example, one have to use the following construct when declaring variables of that type (it is simplest with a typedef):
std::basic_string<char>, std::char_traits<char>, MY_NAMESPACE::allocator<char> >