It can be quite easily achieved with the use of a concept in vector math called dot product.
http://en.wikipedia.org/wiki/Dot_product
It may look intimidating, but it's not that bad. This is the most correct way to deal with your FOV issue, and the beauty is that the same math works whether you are dealing with 2D or 3D (that's when you know the solution is correct).
(NOTE: If anything is not clear, just ask in the comment section and I will fill in the missing links.)
Steps:
1) You need two vectors, one is the heading vector of the main tank. Another vector you need is derived from the position of the tank in question and the main tank.
For our discussion, let's assume the heading vector for main tank is (ax, ay) and vector between main tank's position and target tank is (bx, by). For example, if main tank is at location (20, 30) and target tank is at (45, 62), then vector b = (45 - 20, 62 - 30) = (25, 32).
Again, for purpose of discussion, let's assume main tank's heading vector is (3,4).
The main goal here is to find the angle between these two vectors, and dot product can help you get that.
2) Dot product is defined as
a * b = |a||b| cos(angle)
read as a (dot product) b since a and b are not numbers, they are vectors.
3) or expressed another way (after some algebraic manipulation):
angle = acos((a * b) / |a||b|)
angle is the angle between the two vectors a and b, so this info alone can tell you whether one tank can see another or not.
|a| is the magnitude of the vector a, which according to the Pythagoras Theorem, is just sqrt(ax * ax + ay * ay), same goes for |b|.
Now the question comes, how do you find out a * b (a dot product b) in order to find the angle.
4) Here comes the rescue. Turns out that dot product can also be expressed as below:
a * b = ax * bx + ay * by
So angle = acos((ax * bx + ay * by) / |a||b|)
If the angle is less than half of your FOV, then the tank in question is in view. Otherwise it's not.
So using the example numbers above:
Based on our example numbers:
a = (3, 4)
b = (25, 32)
|a| = sqrt(3 * 3 + 4 * 4)
|b| = sqrt(25 * 25 + 32 * 32)
angle = acos((20 * 25 + 30 * 32) /|a||b|
(Be sure to convert the resulting angle to degree or radian as appropriate before comparing it to your FOV)