I've been reading up a bit on anti-aliasing and it seems to make sense, but there is one thing I'm not too sure of. How exactly do you find the maximum frequency of a signal (in the context of graphics).
I realize there's more than one case so I assume there is more than one answer. But first let me state a simple algorithm that I think would represent maximum frequency so someone can tell me if I'm conceptualizing it the wrong way.
Let's say it's for a 1 dimensional,finite, and greyscale image (in pixels). Am I correct in assuming you could simply scan the entire pixel line (in the spatial domain) looking for a for the minimum oscillation and the inverse of that smallest oscillation would be the maximum frequency?
Ex values {23,26,28,22,48,49,51,49}
Frequency:Pertaining to Set {}
(1/2) = .5 : {28,22}
(1/4) = .25 : {22,48,49,51}
So would .5 be the maximum frequency?
And what would be the ideal way to calculate this for a similar pixel line as the one above?
And on a more theoretical note, what if your sampling input was infinite (more like the real world)? Would a valid process be sort of like:
Predetermine a decent interval for point sampling
Determine max frequency from point sampling
while(2*maxFrequency > pointSamplingInterval)
{
pointSamplingInterval*=2
Redetermine maxFrequency from point sampling (with new interval)
}
I know these algorithms are fraught with inefficiencies, so what are some of the preferred ways? (Not looking for something crazy-optimized, just fundamentally better concepts)