Well, building on what Niall Ryan started, if performance is an issue, you can take this one step further by optimizing the math and encapsulating this into a class.
So we'll start with a bit of math. Recall that 800 can be written in powers of 2 as:
800 = 512 + 256 + 32 = 2^5 + 2^8 + 2^9
So we can write our addressing function as:
int index = y << 9 + y << 8 + y << 5 + x;
So if we encapsulate everything into a nice class we get:
class ZBuffer
{
public:
const int width = 800;
const int height = 800;
ZBuffer()
{
for(unsigned int i = 0, *pBuff = zbuff; i < width * height; i++, pBuff++)
*pBuff = 0;
}
inline unsigned int getZAt(unsigned int x, unsigned int y)
{
return *(zbuff + y << 9 + y << 8 + y << 5 + x);
}
inline unsigned int setZAt(unsigned int x, unsigned int y, unsigned int z)
{
*(zbuff + y << 9 + y << 8 + y << 5 + x) = z;
}
private:
unsigned int zbuff[width * height];
};