This is actually for a programming contest, but I've tried really hard and haven't got even the faintest clue how to do this.
Find the first and last k digits of nm where n and m can be very large ~ 10^9.
For the last k digits I implemented modular exponentiation.
For the first k I thought of using the binomial theorem upto certain powers but that involves quite a lot of computation for factorials and I'm not sure how to find an optimal point at which n^m can be expanded as (x+y)m.
So is there any known method to find the first k digits without performing the entire calculation?
Update 1 <= k <= 9 and k will always be <= digits in nm