I've discovered that std::string's are very slow compared to old-fashioned null-terminated strings, so much slow that they significantly slow down my overall program by a factor of 2.
I expected STL to be slower, I didn't realise it was going to be this much slower.
I'm using Visual Studio 2008, release mode. It shows assignment of a string to be 100-1000 times slower than char* assignment (it's very difficult to test the run-time of a char* assignment). I know it's not a fair comparison, a pointer assignment versus string copy, but my program has lots of string assignments and I'm not sure I could use the "const reference" trick in all places. With a reference counting implementation my program would have been fine, but these implementations don't seem to exist anymore.
My real question is: why don't people use reference counting implementations anymore, and does this mean we all need to be much more careful about avoiding common performance pitfalls of std::string?
My full code is below.
#include <string>
#include <iostream>
#include <time.h>
using std::cout;
void stop()
{
}
int main(int argc, char* argv[])
{
#define LIMIT 100000000
clock_t start;
std::string foo1 = "Hello there buddy";
std::string foo2 = "Hello there buddy, yeah you too";
std::string f;
start = clock();
for (int i=0; i < LIMIT; i++) {
stop();
f = foo1;
foo1 = foo2;
foo2 = f;
}
double stl = double(clock() - start) / CLOCKS\_PER\_SEC;
start = clock();
for (int i=0; i < LIMIT; i++) {
stop();
}
double emptyLoop = double(clock() - start) / CLOCKS_PER_SEC;
char* goo1 = "Hello there buddy";
char* goo2 = "Hello there buddy, yeah you too";
char *g;
start = clock();
for (int i=0; i < LIMIT; i++) {
stop();
g = goo1;
goo1 = goo2;
goo2 = g;
}
double charLoop = double(clock() - start) / CLOCKS_PER_SEC;
cout << "Empty loop = " << emptyLoop << "\n";
cout << "char* loop = " << charLoop << "\n";
cout << "std::string = " << stl << "\n";
cout << "slowdown = " << (stl - emptyLoop) / (charLoop - emptyLoop) << "\n";
std::string wait;
std::cin >> wait;
return 0;
}