I'm not new to programming, but after working in Java I'm coming back to C++ and am a little confused about class variables that aren't pointers.
The confusion appears to come from a combination of data that is on the heap and data that is not necessarily on the heap. This is a common cause of confusion.
In the code you posted, bars
is not a pointer. Since it's in class scope, it will exist until the object containing it (testbars
) is destroyed. In this case testbars
was created on the stack so it will be destroyed when it falls out of scope, regardless of how deeply nested that scope is. And when testbars
is destroyed, subobjects of testbars
(whether they are parent classes or objects contained within the testbars
object) will have their destructors run at that exact moment in a well-defined order.
This is an extremely powerful aspect of C++. Imagine a class with a 10-line constructor that opens a network connection, allocates memory on the heap, and writes data to a file. Imagine that the class's destructor undoes all of that (closes the network connection, deallocates the memory on the heap, closes the file, etc.). Now imagine that creating an object of this class fails halfway through the constructor (say, the network connection is down). How can the program know which lines of the destructor will undo the parts of the constructor that succeeded? There is no general way to know this, so the destructor of that object is not run.
Now imagine a class that contains ten objects, and the constructor for each of those objects does one thing that must be rolled back (opens a network connection, allocates memory on the heap, writes data to a file, etc.) and the destructor for each of those objects includes the code necessary to roll back the action (closes the network connection, deallocates objects, closes the file, etc.). If only five objects are successfully created then only those five need to be destroyed, and their destructors will run at that exact moment in time.
If testbars
had been created on the heap (via new
) then it would only be destroyed when calling delete
. In general it's much easier to use objects on the stack unless there is some reason for the object to outlast the scope it was created in.
Which brings me to Foo::bar
. Foo::bars
is a map
that refers to objects on the heap. Well, it refers to pointers that, in this code example, refer to objects allocated on the heap (pointers can also refer to objects allocated on the stack). In the example you posted the objects these pointers refer to are never delete
d, and because these objects are on the heap you're getting a (small) memory leak (which the operating system cleans up on program exit). According to the STL, std::maps
like Foo::bar
do not delete
pointers they refer to when they are destroyed. Boost has a few solutions to this problem. In your case it's probably be easiest to simply not allocate these objects on the heap:
#include <iostream>
#include <map>
using std::map;
using std::cout;
class Foo {
public:
Foo() {
// normally you wouldn't use the parenthesis on the next line
// but we're creating an object without a name, so we need them
bars[0] = Bar();
bars[0].id = 5;
}
~Foo() { }
struct Bar {
int id;
};
void set_bars(map<int,Bar>& b) {
bars = b;
}
void hello() {
cout << bars[0].id << endl;
}
protected:
map<int,Bar> bars;
};
int main() {
Foo foo;
foo.hello();
map<int,Foo::Bar> testbars;
// create another nameless object
testbars[0] = Foo::Bar();
testbars[0].id = 10;
foo.set_bars(testbars);
foo.hello();
return 0;
}