implementing alloca actually requires compiler assistance. A few people here are saying it's as easy as:
sub esp, <size>
which is unfortunately only half of the picture. Yes that would "allocate space on the stack" but there are a few gotchas.
if the compiler had emitted code
which references other variables
relative to esp instead of ebp
(typical if you compile with no
frame pointer). Then those
references need to be adjusted.
more importantly, by definition, space allocated with alloca must be
"freed" when the function exits.
The big one is point #2. Because you need the compiler to emit code to symetrically add <size>
to esp at every exit point of the function.
The most likely case is the compile offers some compiler intrinsics which allow library writers to ask the compiler for the help needed.
EDIT:
In fact, in glibc (GNU's implementation of libc). The implementation of alloca is simply this:
#ifdef __GNUC__
# define __alloca(size) __builtin_alloca (size)
#endif /* GCC. */
EDIT:
after thinking about it, the minimum I believe would be required would be for the compiler to always use a frame pointer in any functions which use alloca, regardless of optimization settings. This would allow all locals to be referenced through ebp safely and the frame cleanup would be handled by restoring the frame pointer to esp.
EDIT:
So i did some experimenting with things like this:
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#define __alloca(p, N) \
do { \
__asm__ __volatile__( \
"sub %1, %%esp \n" \
"mov %%esp, %0 \n" \
: "=m"(p) \
: "i"(N) \
: "esp"); \
} while(0)
int func() {
char *p;
__alloca(p, 100);
memset(p, 0, 100);
strcpy(p, "hello world\n");
printf("%s\n", p);
}
int main() {
func();
}
which unfortunately does not work correctly. After analyzing the assembly output by gcc. It appears that optimizations get in the way. The problem seems to be that since the compiler's optimizer is entirely unaware of my inline assembly, it has a habit of doing the things in an unexpected order and still referencing things via esp.
Here's the resultant ASM:
8048454: push ebp
8048455: mov ebp,esp
8048457: sub esp,0x28
804845a: sub esp,0x64 ; <- this and the line below are our "alloc"
804845d: mov DWORD PTR [ebp-0x4],esp
8048460: mov eax,DWORD PTR [ebp-0x4]
8048463: mov DWORD PTR [esp+0x8],0x64 ; <- whoops! compiler still referencing via esp
804846b: mov DWORD PTR [esp+0x4],0x0 ; <- whoops! compiler still referencing via esp
8048473: mov DWORD PTR [esp],eax
8048476: call 8048338 <memset@plt>
804847b: mov eax,DWORD PTR [ebp-0x4]
804847e: mov DWORD PTR [esp+0x8],0xd ; <- whoops! compiler still referencing via esp
8048486: mov DWORD PTR [esp+0x4],0x80485a8 ; <- whoops! compiler still referencing via esp
804848e: mov DWORD PTR [esp],eax ; <- whoops! compiler still referencing via esp
8048491: call 8048358 <memcpy@plt>
8048496: mov eax,DWORD PTR [ebp-0x4]
8048499: mov DWORD PTR [esp],eax ; <- whoops! compiler still referencing via esp
804849c: call 8048368 <puts@plt>
80484a1: leave
80484a2: ret
As you can see, it isn't so simple. Unfortunately, I stand by my original assertion that you need compiler assistance.