I'll argue that this problem is simple to solve, when viewed in the proper way. You don't care about order of the elements, only whether they appear in a subset of not.
Count the number of times each element appears in the set. For the one element set {A}, how many subsets are there? Clearly there are only two sets. Now suppose we added another element, B, that is distinct from A, to form the set {A,B}. We can form the list of all sets very easily. Take all the sets that we formed using only A, and add in zero or one copy of B. In effect, we double the number of sets. Clearly we can use induction to show that for N distinct elements, the total number of sets is just 2^N.
Suppose that some elements appear multiple times? Consider the set with three copies of A. Thus {A,A,A}. How many subsets can you form? Again, this is simple. We can have 0, 1, 2, or 3 copies of A, so the total number of subsets is 4 since order does not matter.
In general, for N copies of the element A, we will end up with N+1 possible subsets. Now, expand this by adding in some number, M, of copies of B. So we have N copies of A and M copies of B. How many total subsets are there? Yes, this seems clear too. To every possible subset with only A in it (there were N+1 of them) we can add between 0 and M copies of B.
So the total number of subsets when we have N copies of A and M copies of B is simple. It must be (N+1)*(M+1). Again, we can use an inductive argument to show that the total number of subsets is the product of such terms. Merely count up the total number of replicates for each distinct element, add 1, and take the product.
See what happens with the set {A,B,B}. We get 2*3 = 6.
For the set {A,A,B,B}, we get 3*3 = 9.