Disclaimer: This is inferred knowledge from some research I just did, and should not be taken as gospel.
It's going to overwrite part or all of your saved frame pointer with a null byte - that's the reference point that your calling function will use to offset it's memory accesses. So at that point the calling function's memory operations are going to a different location. I don't know what that location will be, but you don't want to be accessing the wrong memory. I won't say you can do anything, but you might be able to do something.
How do I know this (really, how did I infer this)? Smashing the stack for Fun and Profit by Aleph One. It's quite old, and I don't know if Windows or Compilers have changed the way the stack behaves to avoid these problems. But it's a starting point.
example1.c:
void function(int a, int b, int c) {
char buffer1[5];
char buffer2[10];
}
void main() {
function(1,2,3);
}
To understand what the program does to call function() we compile it with
gcc using the -S switch to generate assembly code output:
$ gcc -S -o example1.s example1.c
By looking at the assembly language output we see that the call to
function() is translated to:
pushl $3
pushl $2
pushl $1
call function
This pushes the 3 arguments to function backwards into the stack, and
calls function(). The instruction 'call' will push the instruction pointer
(IP) onto the stack. We'll call the saved IP the return address (RET). The
first thing done in function is the procedure prolog:
pushl %ebp
movl %esp,%ebp
subl $20,%esp
This pushes EBP, the frame pointer, onto the stack. It then copies the
current SP onto EBP, making it the new FP pointer. We'll call the saved FP
pointer SFP. It then allocates space for the local variables by subtracting
their size from SP.
We must remember that memory can only be addressed in multiples of the
word size. A word in our case is 4 bytes, or 32 bits. So our 5 byte buffer
is really going to take 8 bytes (2 words) of memory, and our 10 byte buffer
is going to take 12 bytes (3 words) of memory. That is why SP is being
subtracted by 20. With that in mind our stack looks like this when
function() is called (each space represents a byte):
bottom of top of
memory memory
buffer2 buffer1 sfp ret a b c
<------ [ ][ ][ ][ ][ ][ ][ ]
top of bottom of
stack stack