Velocity = length / time
so why a vector (x, y, z) is used to represent it?
Velocity = length / time
so why a vector (x, y, z) is used to represent it?
Most likely to measure the change in three dimensional space for the object.
Magnitude of the vector should be the speed you expect, and as the object changes direction, the vector components will most likely change.
You would use a vector because you can have velocity in 3 dimensions. In other words, the 3D velocity is the combination of distance/time in all 3 dimensions. It might be better to name the variables xPrime, yPrime, and zPrime, so that the vector more clearly represents velocity, rather than position.
Because velocity is not "length/time". It is the first derivative of position. Position is a vector, and so its derivatives are also vectors.
Perhaps it is the speed that the object is moving in each of the directions in a 3D space, doing it this way means that you can extrapolate a direction of movement, after all velocity is movement with a direction.
Technically speaking, length divided by time gives you the speed, not velocity. Speed doesn't tell you which direction you are travelling in, while velocity does. In a three dimensional space, in order to describe where you are going and how fast, you need to supply three values: the direction AND speed you are going in each of the three fundamental directions (normally called axes and referred to by x, y, and z). But you could refer to them as forward/backward, sideways, and up/down if you want. For example, if you are travelling at 5km/hour upwards, the vector could be (0,0,5). Travelling 5km/hour downwards, your speed is just the same but the vector would be (0,0,-5). Travelling at 5km/hour at a 45 degree angle forward, the SPEED along each of the x and z axex would be the square root of 5, so the vector would be (approximately) (2.2,0,2.2). And so on.