What we need are natural abstractions for highly-concurrent algorithms. Actors (think: Erlang) go a long way in this direction, but they aren't a one-size-fits-all solution. Some more specific abstractions like fork/join or map/reduce can be even easier to apply to common problems.
The trick with all of these concurrency abstractions is they require functional-style programming. Concurrency doesn't mesh well with shared mutable state. As they say, "Locks considered harmful". Since most developers come from a strictly imperative background, switching to a shared-nothing continuation passing approach is often extremely challenging.
Incidentally, with respect to concurrency abstractions, Clojure has some very interesting features in this direction. Not only does it have sort-of actors, but it also defines a transactional memory model (think: databases) along with a global, atomic references mechanism. These two features allow concurrent operations to share "mutable" state without ever having to worry about locking or race conditions.
In the end, it comes down to education. Much of the needed theoretical work into concurrency abstractions has already been done, we just need to accept it. Unfortunately, as Erlang and Haskell prove, sometimes the best ideas remain relegated to an extremely fringe demographic. Hopefully efforts like Scala and Clojure will succeed in bringing the more advanced abstractions into the mainstream by sneaking them onto an existing, well-supported platform (the JVM).