The problem is the integer division in the innermost part of the expression, which truncates the value (omitting the fractional part). One option, as mentioned, is to make every constant a floating point number, either by adding ".0" or "f" after it. Alternatively, you can omit the parentheses from the innermost expression entirely. Since M_PI
is a floating point number, and multiplication in C is left-associative (meaning it proceeds from left to right) the first multiplication (2 * M_PI) will be promoted to a float, as will each successive multiply. Since cos()
returns a float, pNumber
will be assigned a float without having performed any integer division, hence no loss of precision. (Note: It's not usually wise to count on operator associativity or precedence, but in this case I'm just trying to demonstrate that it would in fact work.)
As far as the range of numbers you should expect to see, recall that the cosine (unmodified) ranges from -1 to +1, not 0 to 1, so you would actually see -100 to 100 (in theory). To get the correct range, you'd want to add 1, then multiply by 50.
Incidentally, the compile errors you get in the first case are because pi
is not defined. The guidance to use M_PI
is correct — for math constants, it's always smarter (and more consistent) to use what the system provides. If you're curious, on Leopard these constants are #defined in Math.h, lines 528-540. You can open the file by using File > Open Quickly... (Cmd-Shift-D) and typing "Math.h", or by double-clicking on M_PI
in your code while holding down Command.