You're probably looking for something like polynomial interpolation. A quadratic/cubic/quartic interpolation ought to give you the sorts of curves you show in the question. The differences between the three curves you show could probably be achieved just by adjusting the coefficients (which indirectly determine steepness).
The graph of y = x^p
for x
from 0 to 1 will do what you want as you vary p
from 1 (which will give the red line) upwards. As p
increases the curve will be 'pushed in' more and more. p
doesn't have to be an integer.
(You'll have to scale to get 0 to 100 but I'm sure you can work that out)
I propose a simple formula, that (I believe) captures your requirement. In order to have a full "quarter circle", which is your extreme case, you would use (1-cos((x*pi)/(2*100)))*100
.
What I suggest is that you take a weighted average between y=x and y=(1-cos((x*pi)/(2*100)))*100. For example, to have very close to linear (99% linear), take:
y = 0.99*x + 0.01*[(1-cos((x*pi)/(2*100)))*100]
Or more generally, say the level of linearity is L, and it's in the interval [0, 1], your formula will be:
y = L*x + (1-L)*[(1-cos((x*pi)/(2*100)))*100]
EDIT: I changed cos(x/100)
to cos((x*pi)/(2*100))
, because for the cos result to be in the range [1,0] X should be in the range of [0,pi/2] and not [0,1], sorry for the initial mistake.
For problems like this, I will often get a few points from a curve and throw it through a curve fitting program. There are a bunch of them out there. Here's one with a 7-day free trial.
I've learned a lot by trying different models. Often you can get a pretty simple expression to come close to your curve.