I'd go like this :
Take the uppermost point of the triangle (the one with the highest Y coordinate). There are two "slopes" starting at that point. It's not the general solution, but for easy visualisation, think of one of both "going to the left" (decreasing x coordinates) and the other one "going to the right".
From those two slopes and any given Y coordinate less than the highest point, you should be able to compute the number of integer points that appear within the bounds set by the slopes. Iterating over decreasing Y coordinates, add all those number of points together.
Stop when your decreasing Y coordinates reach the second-highest point of the triangle.
You have now counted all points "above the second-highest point", and you are now left with the problem of "counting all the points within some (much smaller !!!) triangle, of which you know that its upper side parallels the X-axis.
Repeat the same procedure, but now with taking the "leftmost point" instead of the "uppermost", and with proceedding "by increasing x", instead of by "decreasing y".
After that, you are left with the problem of counting all the integer points within a, once again much smaller, triangle, of which you know that its upper side parallels the X-axis, and its left side parallels the Y-axis.
Keep repeating (recurring), until you count no points in the triangle you're left with.
(Have I now made your homework for you ?)