No, n is not the number of seconds, it's the number of items to process.
O(n) means that the time to process the items is linear to the number of items.
O(n²) means that the time to proess the items is relative to the square of the number of items. If you double the number of items, the processing time will be four times longer.
See: Big O notation
The table assumes that there is a fixed amount of work per item, although the big O notation only specifies how an algorithm reacts to a change in number of items, it doesn't tell you anything about how much work there is per item.
Edit:
The values along the x axis of the table are just approximations based on the assumption that the work per item is the same. For example the value 3000 for O(n²) is rounded from the square root of 10 millions, which is ~3162.28. The cubic root of 10 millions is not 200, it's ~215.44.
In a real situatuon, two algorithms rarely do the same amount of work per item. An algorithm with O(log n) typically does more work per item than an O(n) algorithm for the same purpose, but it's still preferrable in most situations because it scales a lot better.