You definitely do not want to learn from this example, but I wrote an F# implementation of a NewSqueak sieve based on message passing:
type 'a seqMsg =
| Die
| Next of AsyncReplyChannel<'a>
type primes() =
let counter(init) =
MailboxProcessor.Start(fun inbox ->
let rec loop n =
async { let! msg = inbox.Receive()
match msg with
| Die -> return ()
| Next(reply) ->
reply.Reply(n)
return! loop(n + 1) }
loop init)
let filter(c : MailboxProcessor<'a seqMsg>, pred) =
MailboxProcessor.Start(fun inbox ->
let rec loop() =
async {
let! msg = inbox.Receive()
match msg with
| Die ->
c.Post(Die)
return()
| Next(reply) ->
let rec filter' n =
if pred n then async { return n }
else
async {let! m = c.AsyncPostAndReply(Next)
return! filter' m }
let! testItem = c.AsyncPostAndReply(Next)
let! filteredItem = filter' testItem
reply.Reply(filteredItem)
return! loop()
}
loop()
)
let processor = MailboxProcessor.Start(fun inbox ->
let rec loop (oldFilter : MailboxProcessor<int seqMsg>) prime =
async {
let! msg = inbox.Receive()
match msg with
| Die ->
oldFilter.Post(Die)
return()
| Next(reply) ->
reply.Reply(prime)
let newFilter = filter(oldFilter, (fun x -> x % prime <> 0))
let! newPrime = oldFilter.AsyncPostAndReply(Next)
return! loop newFilter newPrime
}
loop (counter(3)) 2)
member this.Next() = processor.PostAndReply( (fun reply -> Next(reply)), timeout = 2000)
interface System.IDisposable with
member this.Dispose() = processor.Post(Die)
static member upto max =
[ use p = new primes()
let lastPrime = ref (p.Next())
while !lastPrime <= max do
yield !lastPrime
lastPrime := p.Next() ]
Does it work?
> let p = new primes();;
val p : primes
> p.Next();;
val it : int = 2
> p.Next();;
val it : int = 3
> p.Next();;
val it : int = 5
> p.Next();;
val it : int = 7
> p.Next();;
val it : int = 11
> p.Next();;
val it : int = 13
> p.Next();;
val it : int = 17
> primes.upto 100;;
val it : int list
= [2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 53; 59; 61; 67; 71;
73; 79; 83; 89; 97]
Sweet! :)