Let's see some Scala solutions. First, I'll define a very basic binary tree:
case class Tree[+T](value: T, left: Option[Tree[T]], right: Option[Tree[T]])
We'll use the following tree:
1
/ \
2 3
/ / \
4 5 6
You define the tree like this:
val myTree = Tree(1,
Some(Tree(2,
Some(Tree(4, None, None)),
None
)
),
Some(Tree(3,
Some(Tree(5, None, None)),
Some(Tree(6, None, None))
)
)
)
We'll define a breadthFirst function which will traverse the tree applying the desired function to each element. With this, we'll define a print function and use it like this:
def printTree(tree: Tree[Any]) =
breadthFirst(tree, (t: Tree[Any]) => println(t.value))
printTree(myTree)
Now, Scala solution, recursive, lists but no queues:
def breadthFirst[T](t: Tree[T], f: Tree[T] => Unit): Unit = {
def traverse(trees: List[Tree[T]]): Unit = trees match {
case Nil => // do nothing
case _ =>
val children = for{tree <- trees
Some(child) <- List(tree.left, tree.right)}
yield child
trees map f
traverse(children)
}
traverse(List(t))
}
Next, Scala solution, queue, no recursion:
def breadthFirst[T](t: Tree[T], f: Tree[T] => Unit): Unit = {
import scala.collection.mutable.Queue
val queue = new Queue[Option[Tree[T]]]
import queue._
enqueue(Some(t))
while(!isEmpty)
dequeue match {
case Some(tree) =>
f(tree)
enqueue(tree.left)
enqueue(tree.right)
case None =>
}
}
That recursive solution is fully functional, though I have an uneasy feeling that it can be further simplified.
The queue version is not functional, but it is highly effective. The bit about importing an object is unusual in Scala, but put to good use here.