If the puzzle you want to handle is that one in the photo you have linked, then it's probably feasible to just search through a tree of possible solutions until you find your way to the bottom.
If each puzzle piece is a number of cubes attached at their faces, and I am to solve the puzzle by fitting each piece into a larger cube, 4 times on each edge as the composing cubes, then I'd proceed as follows.
Declare an arbitrary cube of each piece as its origin. Observe that there are 24 possible rotations for each puzzle piece, one orientation for each possible face of the origin cube facing upwards, times 4 possible rotations about the vertical axis in that position.
Attempt to cull the search space by looking for possible orientations that produce the same final piece, if a given rotation, followed by a translation of the origin cube to any of the other cubes of the piece results in exactly the same occupied volume as a previously considered rotation, cull that rotation from future consideration.
Pull a piece out of the bag. If there are no pieces in the bag, then this is a solution. Loop through each cell of the solution volume, and each rotation of the pulled piece for each cell. If the piece is completely inside the search volume, and does not overlap with any other piece, recurse into this paragraph. Otherwise, proceed to the next rotation, or if there are no more rotations, proceed to the next cell, or if there are no more cells, return without a solution.
If the last paragraph returns without a solution, then the puzzle was unsolvable.