To contradict what everyone else has said so far, go for it! Yeah, your code might have buffer overflow vulnerabilities in it, and may be slow, buggy, etc, but you're doing this for FUN! I completely understand the recreational enjoyment found in playing with crypto.
That being said, cryptography isn't based on obfuscation at all (or at least shouldn't be). Good crypto will continue to work, even once Eve has slogged through your obfuscated code and completely understands what is going on. IE: Many newspapers have substitution code puzzles that readers try and break over breakfast. If they started doing things like reversing the whole string, yes, it'd be harder, but Joe Reader would still be able to break it, neve tuohtiw gnieb dlot.
Good crypto is based on problems that are assumed to be (none proven yet, AFAIK) really difficult. Examples of this include factoring primes, finding the log, or really any other NP-complete problem.
[Edit: snap, neither of those are proven NP-complete. They're all unproven, yet different. Hopefully you still see my point: crypto is based on one-way functions. Those are operations that are easy to do, but hard to undo. ie multiply two numbers vs find the prime factors of the product. Good catch tduehr]
More power to you for playing around with a really cool branch of mathematics, just remember that crypto is based on things that are hard, not complicated. Many crypto algorithms, once you really understand them, are mindbogglingly simple, but still work because they're based on something that is hard, not just switching letters around.
Note: With this being said, some algorithms do add in extra quirks (like string seversal) to make brute forcing them that much more difficult. A part of me feels like I read this somewhere referencing DES, but I don't believe it... [EDIT: I was right, see 5th paragraph of this article for a reference to the permutations as useless.]
BTW: If you haven't found it before, I'd guess the TEA/XTEA/XXTEA series of algorithms would be of interest.