Here is a special Haskell program which outputs a Python program that outputs a Ruby program that outputs the original Haskell program (from http://blog.sigfpe.com/2008/02/third-order-quine-in-three-languages.html)
To be more exactly, the output is of this Haskell program
q a b c=putStrLn $ b ++ [toEnum 10,'q','('] ++ show b ++ [','] ++ show c ++ [','] ++ show a ++ [')']
main=q "q a b c=putStrLn $ b ++ [toEnum 10,'q','('] ++ show b ++ [','] ++ show c ++ [','] ++ show a ++ [')']" "def q(a,b,c):print b+chr(10)+'q('+repr(b)+','+repr(c)+','+repr(a)+')'" "def e(x) return 34.chr+x+34.chr end;def q(a,b,c) print b+10.chr+'main=q '+e(b)+' '+e(c)+' '+e(a)+' '+10.chr end"
is a Python program,
$ runhaskell test.hs
def q(a,b,c):print b+chr(10)+'q('+repr(b)+','+repr(c)+','+repr(a)+')'
q("def q(a,b,c):print b+chr(10)+'q('+repr(b)+','+repr(c)+','+repr(a)+')'","def e(x) return 34.chr+x+34.chr end;def q(a,b,c) print b+10.chr+'main=q '+e(b)+' '+e(c)+' '+e(a)+' '+10.chr end","q a b c=putStrLn $ b ++ [toEnum 10,'q','('] ++ show b ++ [','] ++ show c ++ [','] ++ show a ++ [')']")
which outputs a Ruby program after running,
$ runhaskell test.hs | python
def e(x) return 34.chr+x+34.chr end;def q(a,b,c) print b+10.chr+'main=q '+e(b)+' '+e(c)+' '+e(a)+' '+10.chr end
q("def e(x) return 34.chr+x+34.chr end;def q(a,b,c) print b+10.chr+'main=q '+e(b)+' '+e(c)+' '+e(a)+' '+10.chr end","q a b c=putStrLn $ b ++ [toEnum 10,'q','('] ++ show b ++ [','] ++ show c ++ [','] ++ show a ++ [')']","def q(a,b,c):print b+chr(10)+'q('+repr(b)+','+repr(c)+','+repr(a)+')'")
and finally the Ruby program prints the original Haskell program.
$ runhaskell test.hs | python | ruby
q a b c=putStrLn $ b ++ [toEnum 10,'q','('] ++ show b ++ [','] ++ show c ++ [','] ++ show a ++ [')']
main=q "q a b c=putStrLn $ b ++ [toEnum 10,'q','('] ++ show b ++ [','] ++ show c ++ [','] ++ show a ++ [')']" "def q(a,b,c):print b+chr(10)+'q('+repr(b)+','+repr(c)+','+repr(a)+')'" "def e(x) return 34.chr+x+34.chr end;def q(a,b,c) print b+10.chr+'main=q '+e(b)+' '+e(c)+' '+e(a)+' '+10.chr end"
Since a traditional quine program can be constructed by separating a program in two parts in which partA contains a description of partB and partB computes A from the description.
But how was such a three-order quine constructed?