I have a script that creates file system in a file on a linux machine. I see that to create the file system, it uses 'dd' with bs=x option, reads from /dev/zero and writes to a file. I think usually specifying ibs/obs/bs is useful to read from real hardware devices as one has specific block size constraints. In this case however, as it is reading from virtual device and writing to a file, I don't see any point behind using 'bs=x bytes' option. Is my understanding wrong here? (Just in case if it helps, this file system is later on used to boot a qemu vm)
For reading from /dev/zero, it doesn't matter. ibs/obs/bs specify how many bytes will be read at a time. It's helpful to choose a number based on the way bytes are read/written in the operating system. For instance, Linux usually reads from a hard drive in 4096 byte chunks. If you have at least some idea about how the underlying hardware reads/writes, it might be a good idea to specify ibs/obs/bs. By the way, if you specify bs, it will override whatever you specify for ibs and obs.
The block size is the number of bytes that are read and written at a time. Presumably there is a count=
option, and that is specified in units of the block size. If there is a skip=
or seek=
option, those will also be in block size units. However if you are reading and writing a regular file, and there are no disk errors, then the block size doesn't really matter as long as you can scale those parameters accordingly and they are still integers. However certain sizes may be more efficient than others.
To understand block sizes, you have to be familiar with tape drives. If you're not interested in tape drives - for example, you don't think you're ever going to use one - then you can go back to sleep now.
Remember the tape drives from films in the 60s, 70s, maybe even 80s? The ones where the reel went spinning around, and so on? Not your Exabyte or even QIC - quarter-inch cartridge - tapes; your good old fashioned reel-to-reel half-inch tape drives? On those, block size mattered.
The data on a tape was written in blocks. Each block was separated from the next by an inter-record gap.
----+-------+-----+-------+-----+----
... | block | IRG | block | IRG | ...
----+-------+-----+-------+-----+----
Depending on the tape drive hardware and software, there were a variety of problems that could happen. For example, if the tape was written with a block size of 5120 bytes and you read the tape with a block size of 512 bytes, then the tape drive might read the first block, return you 512 bytes of it, and then discard the remaining data; the next read would start on the next block. Conversely, if the tape was written with a block size of 512 bytes and you requested blocks of 5120 bytes, you would get short reads; each read would return just 512 bytes, and if your software wasn't paying attention, you'd be reading garbage. There was also the issue that the tape drive had to get up to speed to read the block, and then slow down. The ASCII art suggests that the IRG was smaller than the data blocks; that was not necessarily the case. And it took time to read one block, overshoot the IRG, rewind backwards to get to the next block, and start forwards again. And if the tape drive didn't have the memory to buffer data - the cheaper ones did not - then you could seriously affect your tape drive performance.
War story: work prepared on newer machine with a slightly more modern tape drive. I wrote a tape using tar without a sensible block size (so it defaulted to 512 bytes). It was a large bit of software - must have been, oh, less than 100 MB in total (a long time ago, in other words). The tape wrote nicely because the machine was modern enough, and it took just a few seconds to do so. But, I had to get the material off the tape on a machine with an older tape drive, one that did not have any on-board buffer. So, it read the material, 512 bytes at a time, and the reel rocked forward, reading one block, and then rocked back all but maybe half an inch, and then read forwards to get to the next block, and then rocked back, and ... well, you could see it doing this, and since it took appreciable portions of a second to read each 512 byte block, the total time taken was horrendous. My flight was due to leave...and I needed to get that data across too. (It was long enough ago, and in a land far enough away, that last minute changes to flights weren't much of an option either.) To cut a long story short, it did get read - but if I'd used a sensible block size (such as 5120 bytes instead of the default of 512), I would have been done much, much quicker and with much less danger of missing the plane (but I did actually catch the plane, with maybe 20 minutes to spare, despite a taxi ride across Paris in the rush hour).
With more modern tape drives, there was enough memory on the drive to do buffering and getting a tape drive to stream - write continuously without reversing - was feasible. It used to be that I'd use a block size like 256 KB to get QIC tapes to stream. I've not done much with tape drives recently - let's see, not this millennium and not much for a few years before that, either; certainly not much since CD and DVD became the software distribution mechanisms of choice (when electronic download wasn't used).
But the block size really did matter in the old days. And dd
provided good support for it. You could even transfer data from a tape drive that was written with, say, 4 KB block to another that you wanted to write with, say, 16 KB blocks, by specifying the ibs
(input block size) separately from the obs
(output block size). Darned useful!
Also, the count
parameter is in terms of the (input) block size. It was useful to say 'dd bs=1024 count=1024 if=/dev/zero of=/my/file/of/zeroes
' to copy 1 MB of zeroes around. Or to copy 1 MB of a file.
The importance of dd
is vastly diminished; it was an essential part of the armoury for anybody who worked with tape drives a decade or more ago.