If k is very close to 1 or N, any algorithm that generates the sorted sums lazily could simply be run until the kth or N-kth item pops out.
In particular, I'm thinking of best-first search of the following space: (a,b) means the ath item from A, the first list, added to the bth from B, the second.
Keep in a best=lowest priority queue pairs (a,b) with cost(a,b) = A[a]+B[b].
Start with just (1,1) in the priority queue, which is the minimum.
Repeat until k items popped:
pop the top (a,b)
if a<|A|, push (a+1,b)
if a=1 and b<|B|, push (a,b+1)
This gives you a saw-tooth comb connectivity and saves you from having to mark each (a,b) visited in an array. Note that cost(a+1,b)>=cost(a,b) and cost(a,b+1)>=cost(a,b) because A and B are sorted.
Here's a picture of a comb to show the successor generation rule above (you start in the upper left corner; a is the horizontal direction):
|-------
|-------
|-------
It's just best-first exploration of (up to) all |A|*|B| tuples and their sums.
Note that the most possible items pushed before popping k is 2*k, because each item has either 1 or 2 successors. Here's a possible queue state, where items pushed into the queue are marked *
:
|--*----
|-*-----
*-------
Everything above and to the left of the *
frontier has already been popped.
For the N-k<k
case, do the same thing but with reversed priority queue order and exploration order (or, just negate and reverse the values, get the (N-k)th least, then negate and return the answer).
See also: sorted list of pairwise sums on SO, or the Open problems project.