Generally, yes. But there is no guarantee, and the places where the compiler will do it are probably rare.
What most compilers do without a problem is hoisting immutable evaluations out of the loop, e.g. if your condition is
if (a<b) ....
when a and b are not affected by the loop, the comparison will be made once before the loop.
This means if the compiler can determine the condition does not change, the test is cheap and the jump wenll predicted. This in turn means the test itself costs one cycle or no cycle at all (really).
In which cases splitting the loop would be beneficial?
a) a very tight loop where the 1 cycle is a significant cost
b) the entire loop with both parts does not fit the code cache
Now, the compiler can only make assumptions about the code cache, and usually can order the code in a way that one branch will fit the cache.
Without any testing, I'dexpect a) the only case where such an optimization would be applied, becasue it's nto always the better choice:
In which cases splitting the loop would be bad?
When splitting the loop increases code size beyond the code cache, you will take a significant hit. Now, that only affects you if the loop itself is called within another loop, but that's something the compiler usually can't determine.
[edit]
I couldn't get VC9 to split the following loop (one of the few cases where it might actually be beneficial)
extern volatile int vflag = 0;
int foo(int count)
{
int sum = 0;
int flag = vflag;
for(int i=0; i<count; ++i)
{
if (flag)
sum += i;
else
sum -= i;
}
return sum;
}
[edit 2]
note that with int flag = true;
the second branch does get optimized away. (and no, const doesn't make a difference here ;))
What does that mean? Either it doesn't support that, it doesn't matter, ro my analysis is wrong ;-)
Generally, I'd asume this is an optimization that is valuable only in a very few cases, and can be done by hand easily in most scenarios.