Hi,
Let f transform one value to another, then I'm writing a function that repeats the transformation n times.
I have come up with two different ways:
- One is the obvious way that literally applies the function n times, so repeat(f, 4) means x → f(f(f(f(x))))
- The other way is inspired from the fast method for powering, which means dividing the problem into two problems that are half as large whenever n is even. So repeat(f, 4) means x → g(g(x)) where g(x) = f(f(x))
At first I thought the second method wouldn't improve efficiency that much. At the end of the day, we would still need to apply f n times, wouldn't we? In the above example, g would still be translated into f o f without any further simplification, right?
However, when I tried out the methods, the latter method was noticeable faster.
;; computes the composite of two functions
(define (compose f g)
(lambda (x) (f (g x))))
;; identify function
(define (id x) x)
;; repeats the application of a function, naive way
(define (repeat1 f n)
(define (iter k acc)
(if (= k 0)
acc
(iter (- k 1) (compose f acc))))
(iter n id))
;; repeats the application of a function, divide n conquer way
(define (repeat2 f n)
(define (iter f k acc)
(cond ((= k 0) acc)
((even? k) (iter (compose f f) (/ k 2) acc))
(else (iter f (- k 1) (compose f acc)))))
(iter f n id))
;; increment function used for testing
(define (inc x) (+ x 1))
In fact, ((repeat2 inc 1000000) 0) was much faster than ((repeat1 inc 1000000) 0). My question is in what aspect was the second method more efficient than the first? Did re-using the same function object preserves storage and reduces the time spent for creating new objects?
After all, the application has to be repeated n times, or saying it another way, x→((x+1)+1) cannot be automatically reduced to x→(x+2), right?
I'm running on DrScheme 4.2.1.
Thank you very much.