I need a way to represent a 2-D array (a dense matrix) of doubles in C++, with absolute minimum accessing overhead.
I've done some timing on various linux/unix machines and gcc versions. An STL vector of vectors, declared as:
vector<vector<double> > matrix(n,vector<double>(n));
and accessed through matrix[i][j]
is between 5% and 100% slower to access than an array declared as:
double *matrix = new double[n*n];
accessed through an inlined index function matrix[index(i,j)]
, where index(i,j)
evaluates to i+n*j. Other ways of arranging a 2-D array without STL - an array of n pointers to the start of each row, or defining the whole thing on the stack as a constant size matrix[n][n]
- run at almost exactly the same speed as the index function method.
Recent GCC versions (> 4.0) seem to be able to compile the STL vector-of-vectors to nearly the same efficiency as the non-STL code when optimisations are turned on, but this is somewhat machine-dependent.
I'd like to use STL if possible, but will have to choose the fastest solution. Does anyone have any experience in optimising STL with GCC?