I have a N-dimensional vector, X and 'n' equidistant points along each dimension and a parameter 'delta'. I need a way to find the total of n^N vectors enclosed by the Hypercube defined with the vector X at the center and each side of Hypercube being of size 2*delta.
For example:
Consider a case of N=3, so we have a Cube of size (2*delta) enclosing the point X.
------------\
|\--------|--\
| | X | |
----------- |
\ |_2*del___\|
Along each dimension I have 'n' points. So, I have a total of n^3 vectors around X. I need to find all the vectors. Is there any standard algorithm/method for the same? If you have done anything similar, please suggest.
If the problem is not clear, let me know.
This is what I was looking at: Considering one dimension, length of a side is 2*delta and I have n divisions. So, each sub-division is of size (2*delta/n). So I just move to the origin that is (x-delta) (since x is the mid point of the side) and obtain the 'n' points by {(x-delta) + 1*(2*delta/n),(x-delta) + 2*(2*delta/n)....+ (x-delta) + 1*(n*delta/n) } . I do this for all the N-dimensions and then take a permutation of the co-ordinates. That way I have all the points.
(I would like to close this)