I'm looking for some pointers here as I don't quite know where to start researching this one.
I have a 2D matrix with 0 or 1 in each cell, such as:
1 2 3 4
A 0 1 1 0
B 1 1 1 0
C 0 1 0 0
D 1 1 0 0
And I'd like to sort it so it is as "upper triangular" as possible, like so:
4 3 1 2
B 0 1 1 1
A 0 1 0 1
D 0 0 1 1
C 0 0 0 1
The rows and columns must remain intact, i.e. elements can't be moved individually and can only be swapped "whole".
I understand that there'll probably be pathological cases where a matrix has multiple possible sorted results (i.e. same shape, but differ in the identity of the "original" rows/columns.)
So, can anyone suggest where I might find some starting points for this? An existing library/algorithm would be great, but I'll settle for knowing the name of the problem I'm trying to solve!
I doubt it's a linear algebra problem as such, and maybe there's some kind of image processing technique that's applicable.
Any other ideas aside, my initial guess is just to write a simple insertion sort on the rows, then the columns and iterate that until it stabilises (and hope that detecting the pathological cases isn't too hard.)
More details: Some more information on what I'm trying to do may help clarify. Each row represents a competitor, each column represents a challenge. Each 1 or 0 represents "success" for the competitor on a particular challenge.
By sorting the matrix so all 1s are in the top-right, I hope to then provide a ranking of the intrinsic difficulty of each challenge and a ranking of the competitors (which will take into account the difficulty of the challenges they succeeded at, not just the number of successes.)
Note on accepted answer: I've accepted Simulated Annealing as "the answer" with the caveat that this question doesn't have a right answer. It seems like a good approach, though I haven't actually managed to come up with a scoring function that works for my problem.