I hate to be the bearer of bad news but I don't think your three-pointer solution actually works. When I used it in the following test harness, the list was reduced to one node, as per the following output:
==========
4
3
2
1
0
==========
4
==========
You won't get better time complexity than your solution since it's O(n) and you have to visit every node to change the pointers, but you can do a solution with only two extra pointers quite easily, as shown in the following code:
#include <stdio.h>
// The list element type and head.
struct node {
int data;
struct node *link;
};
static struct node *first = NULL;
// A reverse function which uses only two extra pointers.
void reverse() {
struct node *nxtNode, *curNode;
// curNode traverses the list, first is reset to empty list.
curNode = first;
first = NULL;
// Until no more in list, insert current before first and advance.
while (curNode != NULL) {
// Need to save next node since we're changing the current.
nxtNode = curNode->link;
// Insert at start of new list.
curNode->link = first;
first = curNode;
// Advance to next.
curNode = nxtNode;
}
}
// Code to dump the current list.
static void dumpNodes() {
struct node *curNode = first;
printf ("==========\n");
while (curNode != NULL) {
printf ("%d\n", curNode->data);
curNode = curNode->link;
}
}
// Test harness main program.
int main (void) {
int i;
struct node *newnode;
// Create list (using actually the same insert-before-first
// that is used in reverse function.
for (i = 0; i < 5; i++) {
newnode = malloc (sizeof (struct node));
newnode->data = i;
newnode->link = first;
first = newnode;
}
// Dump list, reverse it, then dump again.
dumpNodes();
reverse();
dumpNodes();
printf ("==========\n");
return 0;
}
This code outputs:
==========
4
3
2
1
0
==========
0
1
2
3
4
==========
which I think is what you were after. It can actually do this since, once you've loaded up first
into the pointer traversing the list, you can re-use first
at will.