This is known as the "Center of Distance" and is different from the centroid.
Firstly you have to define what measure of distance you are using. If we assume you are using the standard metric of d=sqrt( (x1-x2)^2 + (y1-y2)^2) then it is not unique, and the problem is minimising this sum.
The easiest example to show this answer is not unique is the straight line example. Any point in between the two points has an equal total distance from all points.
In 1D, the correct answer will be any answer that has the same number of points to the right and the left. As long as this is true, then any move to the left and right will increase and decrease the left and right sides by the same amount, and so leave the distance the same. This also proves the centroid is not necessarily the right answer.
If we extend to 2D this is no longer the case - as the sqrt makes the problem weighted. Surprisingly to me there does not seem to be a standard algorithm! The page here seems to use a brute force method. I never knew that!
If I wanted to use an algorithm, then I would find the median point in X and Y as a start point, then use a gradient descent algorithm - this would get the answer pretty quickly. The whole equation ends up as a quadratic, so it feels like there ought to be an exact solution.