I'm posting this on behalf of a friend since I believe this is pretty interesting:
Take the string "abb". By leaving out any number of letters less than the length of the string we end up with 7 strings.
a b b ab ab bb abb
Out of these 4 are palindromes.
Similarly for the string
"hihellolookhavealookatthispalindromexxqwertyuiopasdfghjklzxcvbnmmnbvcxzlkjhgfdsapoiuytrewqxxsoundsfamiliardoesit"
(a length 112 string) 2^112 - 1 strings can be formed.
Out of these how many are palindromes??
Below there is his implementation (in C++, C is fine too though). It's pretty slow with very long words; he wants to know what's the fastest algorithm possible for this (and I'm curious too :D).
#include <iostream>
#include <cstring>
using namespace std;
void find_palindrome(const char* str, const char* max, long& count)
{
for(const char* begin = str; begin < max; begin++) {
count++;
const char* end = strchr(begin + 1, *begin);
while(end != NULL) {
count++;
find_palindrome(begin + 1, end, count);
end = strchr(end + 1, *begin);
}
}
}
int main(int argc, char *argv[])
{
const char* s = "hihellolookhavealookatthis";
long count = 0;
find_palindrome(s, strlen(s) + s, count);
cout << count << endl;
}