For a list of 10 ints, there are 10! possible orders or permutations. Why does random.shuffle give duplicates after only 5000 tries?
>>> L = range(10)
>>> rL = list()
>>> for i in range(5000):
... random.shuffle(L)
... rL.append(L[:])
...
>>> rL = [tuple(e) for e in rL]
>>> len(set(rL))
4997
>>> for i,t in enumerate(rL):
... if rL.count(t) > 1:
... print i,t
...
102 (7, 5, 2, 4, 0, 6, 9, 3, 1, 8)
258 (1, 4, 0, 2, 7, 3, 5, 9, 6, 8)
892 (1, 4, 0, 2, 7, 3, 5, 9, 6, 8)
2878 (7, 5, 2, 4, 0, 6, 9, 3, 1, 8)
4123 (5, 8, 0, 1, 7, 3, 2, 4, 6, 9)
4633 (5, 8, 0, 1, 7, 3, 2, 4, 6, 9)
>>> 10*9*8*7*6*5*4*3*2
3628800
>>> 2**19937 - 1
431542479738816264805523551633791983905393 [snip]
>>> L = list()
>>> for i in range(5000):
... L.append(random.choice(xrange(3628800)))
...
>>> len(set(L))
4997
Edit: FWIW, if the probability of not having two the same for a single pair is: p = (10! - 1) / 10! and the number of combinations is: C = 5000! / 4998! * 2! = 5000 * 4999 / 2 then the probability of having a duplicate is:
>>> import math
>>> f = math.factorial(10)
>>> p = 1.0*(f-1)/f
>>> C = 5000.0*4999/2
>>> 1 - p**C
0.96806256495611798