You may find the following question relevant...
Basically, an automaton can be minimised using well-known algorithms from automata-theory textbooks. Hopcrofts is an example. There is precisely one minimal automaton that is equivalent to any given automaton. However, that minimal automaton may be represented in different ways. Constructing a safe canonical form is basically a matter of renumbering nodes and ordering the adjacency table using information that is significant in defining the automaton, and not by information that is specific to the representation.
The basic principle should extend to general graphs. Whether you can minimise your graphs depends on their semantics, but the basic idea of renumbering the nodes and sorting the adjacency list still applies.
Other answers here assume things about your graphs - for example that the nodes have unique labels that can be ordered and which are significant for the semantics of your graphs, that can be used to identify the nodes in an adjacency matrix or list. This simply won't work if you're interested in morphims of unlabelled graphs, for instance. Different ways of numbering the nodes (and thus ordering the adjacency list) will result in different canonical forms for equivalent graphs that just happen to be represented differently.
As for the renumbering etc, an approach is to borrow and adapt principles from automata minimisation algorithms. Basically...
Create a vector of blocks (sets of nodes). Initially, populate this with one block per class of nodes (ie per distinct node annotation). The modification here is that we order these by annotation details (not by representation-specific node IDs).
For each class (annotation) of edges in order, evaluate each block. If each node in the block can follow the current edge-type to reach the same set of next blocks, leave it untouched. Otherwise, split it as necessary to get maximal blocks that achieve this objective. Keep these split blocks clustered together in the vector (preserve the existing ordering, just refine it a bit), and order the split blocks based on a suitable ordering of the next-block sets. For example, use bitvectors as long as the current vector of blocks, with a set bit for each block reachable by following the current edge type. To order the bitvectors, treat them as big integers.
EDIT - I forgot to mention - in the second bullet, as soon as you split a block, you restart with the first block in the vector and first edge annotation. Obviously, a naive implementation will be slow, so take the principle and use it to adapt Hopcrofts minimisation algorithm.
If you end up with blocks that have multiple nodes in them, those nodes are equivalent. Whether that means they can be merged or not depends on your semantics, but the relative ordering of nodes within each such block clearly doesn't matter.
If dealing with graphs that can be minimised (e.g. automaton digraphs) I suspect it's best to minimise first, though I still haven't got around to implementing this myself.
The key thing is, of course, ensuring that your renumbering is sensitive only to the significant details of the graph - its structure and annotations - and not the things that are only there so that you can construct a representation such as node IDs/addresses etc.
Once you have the blocks ordered, deriving a canonical form should be easy.