Some months ago there was a nice question regarding a "1:n matching problem" and there seems to be no poly-time algorithm.
I would like to add constraints to find a maximum matching for the 1:n matching problem with a polynomial algorithm. I would like to say: "For vertex A1 choose either {B1,B2,B5} or {B2,B3} if the vertices are not already taken from another A-vertex" i.e. I would not allow all possible combinations.
This could be expressed if we introduce helper vertices H for each choice and substitute edges with trees => we get a problem similar to the ordinary bipartite matching. Every vertex of A or B can have only one edge in the matching. The edges to or from vertices in H are either all in the matching or none of them is present in the matching. Imagine the following tri-partite graph:
Now define h_ij="tree rooted that contains H_ij" to express the matching easily:
- Then in the example M={h12,h22} would be one 'maximum' matching, although not all vertices from B are involved
- The set {h12,h23} is not a matching because then B3 would have be choosen twice.
Would this problem then be solvable in polynomial time? If yes, is there a polytime solution for the weighted (w(h_ij)) variant? If no, could you argue or even proof it for a "simple-man" like me or suggest other constraints to solve the 1:n matching problem?
E.g. could the graph transformed to a general graph which then could be solved with the weighted matching for general graphs? Or could branchings or even matching forests help here?
PS: not a homework ;-)